(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 6774-6795 | Article Number: ijese.2016.508
Published Online: September 13, 2016
Abstract
Evolutionary theory constitutes the overarching concept in biology. There is hardly any other concept that is more complex, and causes more difficulties in learning and teaching. One instructional approach in optimizing the learning of complex topics is to use worked examples combined with self-explanation prompts that fit to the prior knowledge (knowledge adapted prompts). Especially from cognitive psychological research we know, that prior knowledge is a tremendously relevant factor for learning. However, corresponding studies so far mainly consider the domain specific prior knowledge of high knowledge (expert) versus low knowledge (novice) students. The majority of the learners in a classroom – namely students between these experts and novices - were hardly focused on. These students will be considered here. The aim of our study was to identify how these learners with average prior knowledge can be supported by prompts when learning with worked examples.
Using worked examples we analyzed how different types of self-explanation prompts (at novice and/or expert level) affect knowledge acquisition in evolution of learners with average prior knowledge. For determining the prior biological knowledge we used a general biological content knowledge test (GBCK). The learning gain was measured with an evolutionary biological content knowledge test (EBCK). Knowing what type of prompt is most effective for the learners with average knowledge we compared the benefits of this instructional combination between the three knowledge levels: novices, averages, and experts.
Results show that for learners with average knowledge, all types of prompts were equally effective. The Matthew effect was not reliable between the knowledge levels.
According to our results, learners with average prior knowledge did not require explicit measures of differentiation for learning evolution with prompted worked examples. Nonetheless, for the experts it seems not appropriate to use worked examples with adapted self-explanation prompts. Rather it may be advisable to use another instructional format than worked examples.
Keywords: Evolution, worked examples, adaptive prompts, average knowledge, self-explaining
References
Anderson, D. L., Fisher, K. M., & Norman, G. J. (2002). Development and evaluation of the conceptual inventory of natural selection. Journal of Research in Science Teaching, 39(10), 952-978.
Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from examples: Instructional principles from the worked examples research. Review of Educational Research, 70(2), 181-214. doi: 10.3102/00346543070002181
Atkinson, R., & Shiffrin, R. (1968). Human memory: A proposal system and its control processes. In K. Spence & J. Spence (Eds.), The psychology of learning and motivation (Vol. 2, pp. 89-195). New York: Academic.
Baddeley, A. D. (1968). Working memory. Oxford: Oxford University Press.
Basel, N., Harms, U., & Prechtl, H. (2013). Analysis of students’ arguments on evolutionary theory. Journal of Biological Education, 47(4), 192-199. doi: 10.1080/00219266.2013.799078
Basel, N., Harms, U., Prechtl, H., Weiß, T., & Rothgangel, M. (2014). Students‘ arguments on the science and religion issiue: the example of evolutionary theory and genesis. Journal of Biological Education, 48(4), 179-187. doi: 10.1080/00219266.2013.849286
Baumert, J. (Ed.) (1998). Testaufgaben Naturwissenschaften TIMSS 7./8. Klasse (Population 2) [Test items science TIMSS 7./8. grade (population 2)]. Berlin: Max-Planck-Institut für Bildungsforschung.
Besterman, H., & Baggott La Velle, L. (2007). Using human evolution to teach evolutionary theory. Journal of Biological Education, 41(2), 76-81. doi: 10.1080/00219266.2007.9656066
Bishop, B. A., & Anderson, C. W. (1990). Student conceptions of natural selection and its role in evolution. Journal of Research in Science Teaching, 27(5), 415-427.
Bobis, J., Sweller, J., & Cooper, M. (1993). Cognitive load effects in a primary-school geometry task. Learning and Instruction, 3, 1-21.
Brumby, M. (1979). Problems in learning the concept of natural selection. Journal of Biological Education, 13(2), 119-122.
Carroll, W. M. (1994). Using worked examples as an instructional support in the algebra classroom. Journal of Educational Psychology, 86, 360-367. doi: 10.1037/0022-0663.86.3.360
Chi, M. T. H. (2000). Self-explaining expository texts: The dual processes of generating inferences and repairing mental models. In R. Glaser (Ed.), Advances in instructional psychology (pp. 161-238). Mahwah, NJ: Lawrence Erlbaum.
Chi, M. T. H. (2006). Two approaches to the study of experts’ characteristics. In K. A. Ericsson, N. Charness, P. J. Feltovich, & R. R. Hoffman (Eds.), The Cambridge Handbook of expertise and expert performance (pp.21-30). New York: Cambridge University Press.
Chi, M. T. H., De Leeuw, N., Chiu, M., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18(3), 439-477.
Chi, M. T. H., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13(2), 145-182.
Cooper, G., & Sweller, J. (1987). The effects of schema acquisition and rule automation on mathematical problem-solving transfer. Journal of Educational Psychology, 79, 347-362. doi: 10.1037/0022-0663.79.4.347
Crippen, K. J., & Earl, B. L. (2007). The impact of web-based worked examples and self-explanation on performance, problem solving, and self-efficacy. Computers & Education, 49, 809-821. doi: 10.1016/j.compedu.2005.11.018
Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage Publications.
Gregory, T. R. (2009). Understanding natural selection: Essential concepts and common misconceptions. Evolution: Education & Outreach, 2,156-175. doi: 10.1007/s12052-009-0128-1
Große, C. S., & Renkl, A. (2006). Effects of multiple solution methods in mathematics learning. Learning and Instruction, 16, 122-138. doi: 10.1016/j.learninstruc.2006.02.001
Großschedl, J., Konnemann, C., & Basel, N. (2014). Pre-service biology teachers‘ acceptance of evolutionary theory and their preference for its teaching. Evolution: Education and Outreach, 7(18), 1-16. doi: 10.1186/s12052-014-0018-z
Hilbert, T. S., & Renkl, A. (2009). Learning how to use a computer-based concept-mapping tool: Self-explaning examples helps. Computers in Human Behavior, 25, 267-274. doi: 10.1016/j.chb.2008.12.006
Johannsen, M., & Krüger, D. (2005). Schülervorstellungen zur Evolution – eine quantitative Studie [Students conceptions of evolution – a quantitative approach]. IDB – Berichte des Institutes für Didaktik der Biologie, 14, 23-48.
Kalinowski, S. T., Leonard, M. J., & Andrews, T. M. (2010). Nothing in evolution makes sense except in the light of DNA. CBE – Life Sciences Education, 9, 87-97. doi: 10.1187/cbe.09–12–0088
Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychological Review, 19, 509-539. doi: 10.1007/s10684-007-9054-3
Kalyuga, S. (2008). Relative effectiveness of animated and static diagrams: An effect of learner prior knowledge. Computers in Human Behaviour, 24, 852-861. doi: 10.1016/j.chb.2007.02.018
Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38(1), 23-31. doi: 10.1207/S15326985EP3801_4
Kalyuga, S., Chandler, P., & Sweller, J. (2001). Learner experience and efficiency of instructional guidance. Educational Psycholgy: An International Journal of Experimental Educational Psychology, 21(1), 5-23. doi: 10.1080/01443410124681
Kalyuga, S., Chandler, P., Tuovinen, J., & Sweller, J. (2001). When problem solving is superior to studying worked examples. Journal of Educational Psychology, 93(3), 579-588. doi: 10.1037//0022-0663.93.3.579
Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, experimental, and inquiry-based teaching. Educational Psychologist, 41(2), 75-86. doi: 10.1207/s15326985ep4102_1
Kroß, A., & Lind, G. (2001). Einfluss von Vorwissen auf Intensität und Qualität des Selbsterklärens beim Lernen mit biologischen Beispielaufgaben [The impact of prior knowledge on the intensity and quality of self-explanations during studying worked-out examples from the domain of biology]. Unterrichtswissenschaft: Zeitschrift für Lernforschung, 29(1), 5-25.
Lienert, G. A., & Raatz, U. (1994). Testaufbau und Testanalyse [test structure and test analysis]. Weinheim: Beltz.
Lin, L. L., Atkinson, R. K., Saveney, W. C., & Nelson, B. C. (2014). Effects of visual cues and self-explanation prompts: empirical evidence in a multimedia environment. Interactive Learning Environments. doi: 10.1080/10494820.2014.924531
Lind, G., & Sandmann, A. (2003). Lernstrategien und Domänenwissen [Learning strategies and domain knowledge]. Zeitschrift für Psychologie, 211(4), 171-192. doi: 10.1026//0044-3409.211.4.171
Mackensen-Friedrichs, I. (2005). Förderung des Expertiseerwerbs durch das Lernen mit Beispielaufgaben im Biologieunterricht der Klasse 9 [Enhancing acquisition of expertise by learning with worked examples in biology lesson of ninth grade]. Doctoral dissertation, University of Kiel. Retrieved from http://e-diss.uni-kiel.de/diss_1303/
Mackensen-Friedrichs, I. (2009). Die Rolle von Selbsterklärungen aufgrund vorwissensangepasster, domänenspezifischer Lernimpulse beim Lernen mit biologischen Beispielaufgaben [The role of self-explanations caused by domains-specific learning-stimuli that are adapted to the learners pre-knowledge while learning with biological worked-examples]. Zeitschrift für Didaktik der Naturwissenschaften, 15, 155-172.
Mayer, R. E., Heiser, J., & Lonn, S. (2001). Cognitive constrains on multimedia learning: When presenting more material results in less understanding. Journal of Educational Psychology, 93(1), 187-198. doi: 10.1037/0022-0663.93.1.187
Mayr, E. (1982). The growth of biological thought: Diversity, Evolution, and Inheritance Cambridge: Harvard University Press.
Merton, R. K. (1968). The Matthew Effect in Science. Science, 159(3810), 56-63.
National Research Council and National Academy of Sciences. (2012). Thinking Evolutionarily: Evolution Education Across the Life Sciences. Summary of a Convocation. Steve Olson, Rapporteur. Planning Committee on Thinking Evolutionarily: Making Biology Education Make Sense. Board on Life Sciences, Division on Earth and Life Studies, National Research Council, and National Academy of Sciences. Washington, DC: The National Academies Press.
Nehm, R. H., Poole, T. M., Lyford, M. E., Hoskins, S. G., Carruth, L., Ewers, B. E., & Colberg, P. J. S. (2009). Does the segregation of evolution in biology textbooks and introductory courses reinforce students’ faulty mental models of biology and evolution? Evolution: Educations and Outreach, 2, 527-532. doi: 10.1007/s12052-008-0100-5
Nehm, R. H., & Reilly, R. (2007). Biology majors’ knowledge and misconceptions of natural selection. BioScience, 57(3), 263-272.
Nehm, R. H., & Schonfeld, I. S. (2007). Does increasing biology teacher knowledge of evolution and the nature of science lead to greater preference for the teaching of evolution in schools? Journal of Science and Teacher Education, 18, 699–723. doi: 10.1007/s10972-007-9062-7
Nokes, T. J., Schunn, C. D., & Chi, M. T. H. (2010). Problem solving and human expertise. In P. Peterson, E. Baker, & B. McGaw (Eds.), International Encyclopedia of Education (Vol. 5, pp. 265-272). Oxford: Elsevier
Nokes-Malach, T. J., VanLehn, K., Belenky, D. M., Lichtenstein, M., & Cox, G. (2013). Coordinating principles and examples through analogy and self-explanation. European Journal of Psychology of Education, 28, 1237-1263. doi: 10.1007/s10212-012-0164-z
Nückles, M., Hübner, S., Dümer, S., & Renkl, A. (2010). Expertise reversal effects in writing-to-learn. Instructional Science, 38(3), 237-258. doi: 10.1007/s11251-009-9106-9
Opfer, J. E., Nehm, R. H., & Ha, M. (2012). Cognitive foundations for science assessment design: Knowing what students know about evolution. Journal of Research in Science Teaching, 49(6), 744-777. doi: 10.1002/tea.21028
Paas, F., & van Gog, T. (2006). Optimising worked example instruction: Different ways to increase germane cognitive load. Learning and Instruction, 16, 87-91. doi: 10.1016/j.learninstruc.2006.02.004
Renkl, A. (1997). Learning from worked-examples: A study on individual differences. Cognitive Science, 21(1), 1-29.
Renkl, A. (2005). The worked-out-example principle in multimedia learning. In R. E. Mayer (Ed.), Cambridge handbook of multimedia learning (pp. 229-246). Cambridge, UK: Cambridge University Press.
Renkl, A., & Atkinson, R. K. (2003). Structuring the transition from example study to problem solving in cognitive skill acquisition: A cognitive load perspective. Educational Psychologist, 38(1), 15-22. doi: 10.1207/S15326985EP3801_3
Ross, P. M., Taylor, C. E., Hughes, C., Whitaker, N., Lutze-Mann, L., Koford, M., & Tzioumis, V. (2010). Threshold concepts in learning biology and evolution. Biology International, 47, 47-54.
Rutledge, M. L., & Warden, M. A. (2000). Evolutionary theory, the Nature of Science & high school biology teachers: critical relationships. The American Biology Teacher, 62(1), 23-31. doi: 10.1662/0002-7685(2000)062[0023:ETTNOS]2.0.CO;2
Salden, R., Koedinger, K. R., Renkl, A., Aleven, V., & McLaren, B. M. (2010). Accounting for beneficial effects of worked examples in tutored problem solving. Educational Psychology Review, 22(4), 379-392. doi: 10.1007/s10648-010-9143-6
Schmiemann, P. (2010). Modellierung von Schülerkompetenzen im Bereich des biologischen Fachwissens [Modeling of student competencies in the field of biological content knowledge]. Berlin: Logos.
Schwonke, R., Renkl, A., Krieg, C., Wittwer, J., Aleven, V., & Salden, R. (2009). The worked-example effect: Not an artefact of lousy control conditions. Computers in Human Behavior, 25, 258-266. doi: 10.1016/j.chb.2008.12.011
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257-285.
Sweller, J. (2006). The worked example effect and human cognition. Learning and Instruction, 16, 165-169. doi:10.1016/j.learninstruc.2006.02.005
Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognition and Instruction, 2(1), 59-89. doi: 10.1207/s1532690xci0201_3
Sweller, J., van Merrienboer, J. J. G., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251-296. doi: 1040-726X/98/0900-0251S15.00/0
Tuovinen, J. E., & Sweller, J. (1999). A comparison of cognitive load associated with discovery learning and worked examples. Journal of Educational Psychology, 91, 334-341. doi: 10.1037/002-0663.91.2.334
Van Merrienboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147-177. doi: 10.1007/s10648-005-3951-0
Wadouh, J., Liu, N., Sandmann, A., & Neuhaus, B. J. (2014). The effect of knowledge Linking levels in biology lessons upon students‘ knowledge structure. International Journal of Science and Mathematics Education, 12(1), 25-47.
Walberg, H. J., Tsai, S.-L. (1983). Matthew effects in education. American Educational Research Journal, 20(3), 359-373.
Wischer, B. (2008). Binnendifferenzierung ist ein Wort für das schlechte Gewissen des Lehrers [Internal differentiation is a word for the guilty conscience of a teacher]. Erziehung und Unterricht, 158(9-10), 714-722.
Yates, T. B., & Marek, E. A. (2014). Teachers teaching misconceptions: a study of factors contributing to high school biology students' acquisition of biological evolution-related misconceptions. Evolution: Education & Outreach, 7(1), 7.