(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 4844-4854 | Article Number: ijese.2016.358
Published Online: August 09, 2016
Abstract
The aim of the research is to create the classification for shock wave triple configurations and their existence regions of various types: type 1, type 2, type 3. Analytical solutions for limit Mach numbers and passing shock intensity that define existence region of every type of triple configuration have been acquired. The ratios that conjugate intensities of three shock in triple configuration and flow turn angle on them are presented. The transition (boundary) shock wave triple configurations have been reviewed. The acquired results can be used to design shock wave structures with set properties in detonation engines, air collectors, technological plants, when analyzing shock wave influence on objects during an explosion. Triple configurations of type 1 are used in internal compression air intakes that are based on interaction of oncoming shocks. Triple configurations of type 2 can be found in supersonic gas jets, at Mach reflection of shock and detonative waves from solid walls. Triple configurations of type 3 are used in supersonics multishock air intakes of external or mixed compression.
Keywords: Mach reflection, triple shock wave configuration, von Neumann criterion, Mach configuration, Mach stem
References
Adrianov, A. L., Starykh, A. L. & Uskov, V. N. (1995). Interference of Stationary Gasdynamic Discontinuities. Novosibirsk: Publishing house “Nauka”
Bulat, P. V. (2014). About the detonation engine. American Journal of Applied Sciences, 11(8), 1357-1364.
Bulat, P. V. & Uskov, V. N. (2014). Shock and detonation wave in terms of view of the theory of interaction gasdynamic discontinuities. Life Science Journal, 11(8), 307-310.
Courant, R. & Friedrichs, K. O. (1948). Supersonic Flow and Shock Waves. New York Interscience, 376 p.
Guderley, K. G. (1962). The theory of transonic flow. Oxford, New York: Pergamon Press, 264 p.
Henderson, L. F. & Lozzi, A. (1975). Experiments on transition of Mach reflexion. Journal of Fluid Mechanics, 68(1), 139-355.
Henderson, L. F. & Lozzi, A. (1979). Further experiments on transition to Mach reflexion. Journal of Fluid Mechanics, 94(3), 541-559.
Isakova, N. P., Kraiko, A. N., P’yankov, K. S. & Tillyayeva N. I. (2012). The amplification of weak shock waves in axisymmetric supersonic flow and their reflection from an axis of symmetry. Journal of Applied Mathematics and Mechanics, 76(4), 451-465.
Ivanov, M. S., Bondar, Y. A. & Khotyanovsky, D. V. (2010). Viscosity effects on weak irregular reflection of shock waves in steady flow. Progress in Aerospace Sciences, 46(3), 89-105.
Landau, L. D. & Lifshitz, E. M. (2003). Theoretical Physics. Moscow: Publishing house “FIZMATLIT”, 326 p.
Omelchenko, A. V. & Uskov, V. N. (2002). Interference of nonstationary oblique shock waves. Technical Physics Letters, 28(6), 491-493.
Omelchenko, A. V. & Uskov, V. N. (1999). Optimum overtaking compression shocks with restrictions imposed on the total flow-deflection angle. Journal of Applied Mechanics and Technical Physics, 40(4), 638-646.
Roy, G. D., Frolov, S. M., Borisov, A. A. & Netzer, D. W. (2004). Pulse detonation propulsion: challenges, current status, and future perspective. Progress in Energy and Combustion Science, 30(6), 545-672.
Tao, G., Uskov, V.N. & Chernyshov, M. V. (2005). Optimal triple configurations of stationary shocks. \ Direct access: http://link.springer.com/chapter/10.1007/978-3-540-27009-6_74.
Uskov, V. N. (1980). Shock Waves and Their Interaction. Leningrad: LMI press, 285 p.
Uskov, V. N. & Chernyshov, M. V. (2006). Special and extreme triple shock-wave configurations. Journal of Applied Mechanics and Technical Physics, 47(4), 492-504.
Uskov, V. N. & Mostovykh, P. S. (2008). Triple configurations of traveling shock waves in inviscid gas flows. Journal of Applied Mechanics and Technical Physics, 49(3), 347-353.
Uskov, V. N. & Mostovykh, P. S. (2010). Interference of stationary and non-stationary shock waves. Shock Waves, 20(2), 119-129.
Uskov, V. N. & Omelchenko, A. V. (1995). Optimal shock-wave systems. Fluid Dynamics, 6, 126-134.
Uskov, V. N., Chernyshov, M. V., Erofeev, V. K. & Genkin, P. (2006). Optimal shock-wave structures and new ideas about supersonic gas jet noise generation. Direct access: http://icsv13.tuwien.ac.at