(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 493-513 | DOI: 10.12973/ijese.2015.256a | Article Number: ijese.2015.010
Published Online: May 16, 2015
Abstract
The present study incorporated a scaffolding decision making procedure on an authentic environmental socio-scientific issue and investigated how students’ decisions are intertwined with their values. Computer-based activities provided necessary information and allowed for the consideration of multiple aspects of the issue, the study of the effects of every possible solution and the formulation and balancing of criteria. The optimization strategy for decision making was adopted. Data collection relied on 51 sixth grade students (11-12 years old). Open-ended written tests were given to students before and after the learning intervention with two tasks: application of the optimization strategy and a meta-reflection question explaining their decision. Children incorporated several criteria in the decision making process, however, what guided their decisions were the criteria which were given the greater weight. These criteria were connected with substantive arguments and were based on decisive values. Three value-driven patterns of decision makers were revealed: strong anthropocentric, weak anthropocentric and ecocentric. The ability of assigning weight in conflicting criteria is a cornerstone for the emersion of how values are interrelated with decisions. Values arise when preferences are in conflict and decisions are made by weighting alternatives in comparison to our preferences. In conclusion, students have to learn to develop solutions that represent a compromise between economic, ecological, and socioeconomic dimensions, which include establishing a value hierarchy. The ability to weight decision criteria and to disclose underlying value considerations may be an elaborate way to work with multifaceted socio-scientific issues.
Keywords: sustainability, decision making, optimization method, environmental values
References
Acar, O., Turkmen, L., & Roychoudhury, A. (2010). Student Difficulties in Socio-scientific Argumentation and Decision-making Research Findings: Crossing the borders of two research lines. International Journal of Science Education, 32(9), 1191-1206.
Anderson, R. D., Sweeney, J. D., & Williams, A. T. (2005). An Introduction to Management Science: Quantitative approaches to decision-making (11th ed.). West Publishing.
Berk, L. (1994). Child development. Needham Heights, MA: Allyn and Bacon.
Beyth-Marom, R., Novik, R., & Sloan, M. (1987). Enhancing children’s thinking skills: An instructional model for decision-making under certainty. Instructional Science, 16, 215-231.
Birnbaum, M. (1998). Measurement, judgment and decision-making. San Diego, CA: Academic Press.
Bogeholz, S., & Barkmann, J. (2005). Rational choice and beyond: Action-oriented competencies for dealing with factual and ethical complexity. In R. Klee, A. Sandmann, & H. Vogt (Eds.), Lehr-und Lernforschung in der Biologiedidaktik [Educational research in didactics of biology] (Vol. 2, pp. 211-224). Insbruck: Studienverlag.
Brennan, A., Lo.Y.S. (2002). Environmental ethics. In The Stanford Encyclopedia of Philosophy. EN Zalta.
Crain, W.C. (1985). Theories of development: Concepts and applications, 2nd ed Englewood Cliffs, NJ: Prentice-Hall.
de Haan, G. (2010). The development of ESD-related competencies in supportive institutional frameworks. International Review of Education, 56(2), 315-328.
Dewey, J. (1988). Theory of valuation. In J. Boydston (Ed.), John Dewey The Later
Works (Vol. 13, pp. 189-251). Carbondale & Edwardsville: Southern Illinois University Press.
Dietz, T. M., Fitzgerald, A., & Shwom, R. (2005). Environmental Values. Annual Review of Environment & Resources, (30)12, 1-38.
Dietz, T., & Stern, P. C. (1995). Toward realistic models of individual choice. Journal of Socio-Economics, 24, 261-79.
Eggert, S., & Bögeholz, S. (2010). Students’ use of decision-making strategies with regard to socioscientific issues: An application of the Rasch partial creditmodel. Science Education, 94, 230-258.
Fleming, R. (1986). Adolescent reasoning in socio-scientific issues, part II: Nonsocial cognition. Journal of Research in Science Teaching, 23(8), 689-698.
Grace, M. 2008. Developing high quality decision-making discussions about biological conservation in a normal classroom setting. International Journal of Science Education, 31, 551-570.
Hechter, M. (1994). The role of values in rational-choice theory. Rationality and Society, 6, 318-33.
Hogan, K. (2002). Small groups’ ecological reasoning while making an environmental management decision. Journal of Research in Science Teaching, 39(4), 341-368.
Jiménez-Aleixandre, M. P., & Pereiro-Muñoz, C. (2002). Knowledge producers or knowledge consumers? Argumentation and decision making about environmental management. International Journal of Science Education, 24(11), 1171–1190.
Joas, H. (2000). The Genesis of Values. Chicago, Ill: University of Chicago
Kahneman, D. (2003). A perspective on judgment and choice: Mapping bounded rationality. American Psychologist, 58(9), 697-720.
Klaczynski, P. A., & Cottrell, J. M. (2004). A dual-process approach to cognitive development: The case of children’s understanding of sunk cost decisions. Thinking & Reasoning, 10, 147-174.
Kolstø, S. D. (2006). Patterns in students’ argumentation confronted with a risk-focused socioscientific issue. International Journal of Science Education, 28, 1689-1716.
Kortland, K. (1996). An STS case study about students’ decision making on the waste issue. Science Education, 80(6), 673-689.
Krippendorff, K. (2004). Content Analysis: An Introduction to Its Methodology. Thousand Oak CA: Sage.
McTighe, J., & Schollenberger, J. (1991). Why teaching thinking? A statement of rationale. In: A. Costa (Ed.) Developing minds (Alexandria, VA, Association for Supervision and Curriculum Development).
Ministry of Education and Culture (2010). Curriculum of Preprimary, Primary and Secondary Education, (Volume 1,pp. 249-252). Nicosia: Pedagogical Institute – Program Development Service.
Nicolaou, Ch., Korfiatis, K., Evagorou, M., & Constantinou, C. (2009). Development of decision-making skills and environmental concern through computer-based, scaffolded learning activities. Environmental Education Research, 15, 39-54.
Papadouris, N. (2012). Optimization as a reasoning strategy for dealing with socioscientific decision-making situations. Science Education, 96(4), 600-630.
Papadouris, N., & Constantinou, C. P. (2010). Approaches employed by sixth-graders to compare rival solutions in socio-scientific decision-making tasks. Learning and Instruction, 20, 225 – 238.
Paraskeva-Hadjichambi D., Korfiatis K., Hadjichambis A. Ch & Arianoutsou, M. (2010). Charismatic threatened plant Vs road development: Value driven decision-making through computer-based, scaffolded learning activities. Paper presented at the eighth Conference for the Didactics of Biology. ERIDOB, Portugal.
Paraskeva-Hadjichambi, D., Korfiatis, K., Hadjichambis, A. Ch, & Arianoutsou, M. (2012). Conservation reasoning and proposed actions for the protection of threatened plant species: insights from a sample of rural and urban children of Cyprus. Society and Natural Resources, 25(9), 868-882.
Patronis, T., Potari, D., & Spiliotopoulou, V. (1999). Students’ argumentation in decision-making on a socio-scientific issue: Implications for teaching. International Journal of Science Education, 21(7), 745-754.
Payne, J., Bettmann, J. R., & Luce, M. F. (1998). Behavioral decision research: An overview. In M.H. Birnbaum (Ed.), Measurement, judgment, and decision making (2nd ed., pp. 303–359). San Diego, CA: Academic Press.
Ratcliffe, M. (1996). Adolescent decision-making about socio-scientific issues, within the science curriculum (Unpublished PhD Thesis). University of Southampton, UK.
Ratcliffe, M. (1997). Student decision-making about socio-scientific issues within the science curriculum. International Journal of Science Education, 19(2), 167-182.
Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41, 513-536.
Sadler, T. D., & Zeidler, D. L. (2004). The morality of socioscientific issues: Construal and resolution of genetic engineering dilemmas. Science Education, 88(1), 4-27.
Sauve, L. (1996). Environmental education and sustainable development: A further appraisal. Canadian Journal of Environmental Education, 1, 7-34.
Schwartz, S. H., & Bilsky, W. (1987). Toward a universal psychological structure of human values. Journal of Personality and Social Psychology, 53, 550-62.
Scott, W., & Gough, S. (2003). Sustainable development and learning. London: Routledge, Falmer.
Seethaler, S., & Linn, M. C. (2004). Genetically modified food in perspective: An inquiry based curriculum to help middle school students make sense of tradeoffs. International Journal of Science Education 26(14), 1765-85.
Siegel, M. (2006). High school students’ decision-making about sustainability. Environmental Education Research, 12(2), 201-15.
Simonneaux, L. (2001). Role-play or debate to promote students’ argumentation and justification on an issue in animal transgenesis. International Journal of Science Education, 23(9), 903-927.
Stanovich, K. E. (1999). Who is rational? Studies of individual differences in reasoning. Mahwah, NJ: Erlbaum.
Stern, P. C., Dietz, T., Kalof, L., & Guagnano, G. A. (1995). Values, beliefs and proenvironmental action: Attitude formation toward emergent attitude objects. Journal of Applied Social Psychology, 25, 1611-1636.
UNESCO (1998). Reshaping education for sustainable development. Environment and development issues. Paris: UNESCO.
Uskola, A., Maguregi, G., & Jiménez-Aleixandre, M. P. (2010). The use of criteria in argumentation and the construction of environmental concepts: a university case study. International Journal of Science Education, 32(17), 2311-2333.
Vosniadou, S. (2002). Introduction to Psychology. Biological, developmental and behavioral approaches (in Greek). Athens, GR: Gutenberg.
Walker, K. A., & Zeidler, D. L. (2007). Promoting discourse about socioscientific issues through scaffolded inquiry. International Journal of Science Education, 29(11), 1387-1410.
Wray-Lake, L., Flanagan C. A., & Osggod, D. W. (2010). Examining trends in adolescent attitudes, beliefs and behaviors across three decades. Environment and Behavior, 42(1), 61-85.
Wu, Y. T., & Tsai, C. C. (2007). High school students’ informal reasoning on a socio-scientific issue: Qualitative and quantitative analyses. International Journal of Science Education, 29(9), 1163-1187.
Zeidler, D. L., & Sadler, T. D. (2007). The role of moral reasoning in argumentation: Conscience, character, and care. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education (pp. 201-216). Dordrecht: Springer.
Zeidler, D., Sadler, T., Simmons, M., & Howes, E. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89, 357-377.