(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 301-318 | DOI: 10.12973/ijese.2015.247a | Article Number: ijese.2015.001
Published Online: May 10, 2015
Abstract
This qualitative study investigates how biology majors explain energy consumption issues. In particular, we focus on two energy consumption activities that account for about two-thirds of global carbon dioxide emissions in 2011: burning fossil fuels for transportation and using electricity. We conducted in-depth clinical interviews with twenty U.S. students and twenty Chinese students. We compared these two groups of students in terms of two aspects of explanation: 1) naming scientific terms in the explanation, and 2) explaining an energy consumption issue. Regarding naming, we examined the frequency of naming different terms of scientific concepts and principles in students’ explanations. Regarding explaining, we developed a rubric that differentiates three levels of explaining: informal explanations that are based upon intuitive ideas (Level 1), school science explanations that are based on alternative conceptions about matter and energy (Level 2), and scientific explanations that demonstrate the scientific understanding of concepts/principles about matter and energy (Level 3). The results revealed that scientific terms appeared most frequently in scientific explanations (Level 3), but they also appeared in many school science explanations (Level 2) and in some informal explanations (Level 1). We further describe how scientific terms were used in explanations at different levels. We found although Chinese students named scientific terms more frequently and demonstrated a better performance in explaining, they still produced more informal explanations and school science explanations than scientific explanations. In general, the results suggest the importance of promoting students’ abilities to use scientific terms correctly and meaningfully in explaining real-world environmental events in both countries.
Keywords: naming, explaining, environmental literacy, energy consumption
References
Andersson, B. (1986). Pupil's explanations of some aspects of chemical reactions. Science Education, 79(5), 549-563.
Andersson, B. (1990). Pupil's conceptions of matter and its transformations (age 12-16). Studies in Science Education, 18, 53-85.
Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn: Brain, mind, experience, and school. Washington, D.C.: National Academy Press.
Fang, Z. (2004). Scientific literacy: A systemic functional linguistics perspective. Science Education, 89(2), 335-347.
International Energy Agency [IEA]. (2013). CO2 emissions from fuel combustion: Highlights. Paris, France: IEA.
Jia, H. (2004, September 8). China to release draft 'scientific literacy standards'. Science Development Network Retrieved from http://www.scidev.net/global/policy/news/china-to-release-draft-scientific-literacy-standa.html.
Jin, H., & Anderson, C. W. (2012a). A learning progression for energy in socio-ecological systems. Journal of Research in Science Teaching, 49(9), 1149-1180.
Jin, H., & Anderson, C. W. (2012b). Development of assessments for a learning progression on carbon cycling in socio-ecological systems. In A. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 151-182). Rotterdam, The Netherlands: Sense Publishers.
Jin, H., & Wei, X. (2014). Using ideas from the history of science and linguistics to develop a learning progression for energy in socio-ecological systems. In R. F. Chen, A. Eisenkraft, F. Fortus, J. Krajcik, K. Neumann, J. C. Nordine & A. Scheff (Eds.),Teaching and learning of energy in K-12 Education (pp. 157-174). New York: Springer.
Jin, H., Zhan, L., & Anderson, C. W. (2013). Developing a fine-grained learning progression framework for carbon-transforming processes. International Journal of Science Education, 35(10), 1663-1697.
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174.
Liu, Y. (2006). Promoting science literacy at high school level. Beijing: Chinese Ministry of Education.
Marek, E. (1986). They misunderstand but they'll pass. The Science Teacher, 32-35.
National Research Council [NRC]. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, D.C.: The National Academies Press.
Olivier, J. G. J., Janssens-Maenhout, G., Muntean, M., & Peters, J. A. H. W. (2013). Global CO2 emissions: 2013 Report. The Hague: PBL Netherlands Environmental Assessment Agency.
Organisation for Economic Co-operation and Development [OECD]. (2009). Green at fifteen? How 15-year-olds perform in environmental science and geoscience in PISA 2006. France: Programme for International Student Assessment, OECD.
Organisation for Economic Co-operation and Development [OECD]. (2013). PISA 2012 results in focus: What 15-year-olds know and what they can do with what they know? Paris: PISA, OECD Publishing.
Paribakht, T. S., & Wesche, M. (1997). Vocabulary enhancement activities and reading for meaning in second language vocabulary acquisition. In J. Coady & T. Huckin (Eds.), Second language vocabulary acquisition: A rationale for pedagogy. United Kingdom: Cambridge University Press.
Swackhamer, G. (2005a). Cognitive resources for understanding energy. Department of Physics and Astronomy. Arizona State University. Tempe, Arizona.
Swackhamer, G. (2005b). Making work work. Department of Physics and Astronomy. Arizona State University. Tempe, Arizona.
The Ministry of Education. (2003). National curriculum standards: Science education. Beijing, China: The Ministry of Education of the People's Republic of China