(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 623-647 | DOI: 10.12973/ijese.2015.258a | Article Number: ijese.2015.023
Published Online: September 09, 2015
Abstract
Constructing and critiquing scientific arguments has become an increasingly important goal for science education. Yet, the differences in the ways students construct collaborative oral and individual written socioscientific arguments are not well established. Our research with one middle school class in an urban New England school district addresses the following question: What are the similarities and differences between students’ collaborative oral and individual written scientific arguments? Data sources consisted of transcripts from three videotaped lessons and associated student work. The sophistication of both the collaborative oral and individual written argument products were analyzed using a proposed learning progression. Results suggest that the students’ collaborative oral arguments tended to be of lower sophistication whereas the individual written arguments tended to be of higher sophistication; however both modalities tended to include inappropriate justifications. Moreover, in the written arguments it was easier for students to include a rebuttal than limit their argument to using only appropriate justifications. These findings suggest that there are both commonalities and differences across the expressive modalities that can be targeted in an effort to strengthen the quality of students’ arguments.
Keywords: argument, socioscientific, student learning, learning progression, middle school science
References
Aikenhead, G. S. (2005). Science-based occupations and the science curriculum: Concepts of evidence. Science Education, 89(2), 242-275. doi:10.1002/sce.20046
Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: Designing for learning from the Web with KIE.International Journal of Science Education, 22, 797-817. doi:10.1080/095006900412284
Berland, L. K., & Hammer, D. (2012). Framing for scientific argumentation. Journal of Research in Science Teaching, 49(1), 68-94. doi:10.1002/tea.20446
Berland, L. K., & McNeill, K. L. (2010). A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education, 94(5), 765-793. doi:10.1002/sce.20402
Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26-55. doi:10.1002/sce.20286
Berland, L. K., & Reiser, B. J. (2011). Classroom communitites adaptations of the practic of scientific argumentation. Science Education, 95(2), 191-216. doi:10.1002/sce.20420
Cavagnetto, A. R. (2010). Argument to foster scientific literacy: A review of argument interventions in K-12 science contexts. Review of Educational Research, 80(3), 336-371. doi:10.3102/0034654310376953
Clark, D. B., & Sampson, B. (2008). Assessing dialogic argumentation in online environments to relate structure, grounds, and conceptual quality. Journal of Research in Science Teaching, 45(3), 293-321. doi:10.1002/tea.20216
Common Core State Standards Initiative. (2010). Common core state standards for English language arts & literacy in history/social studies, science, and technical subjects. Retrieved from http://www.corestandards.org/assets/CCSSI_ELA%20Standards.pdf
Dawson, V. M., & Venville, G. (2009). High school students’ informal reasoning and argumentation about biotechnology: An indicator of scientific literacy? International Journal of Science Education, 31(11), 1421-1445. doi:10.1080/09500690801992870
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312. doi:10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (Eds.). (2007). Taking science to school: Learning and teaching science in grades k-8. Washington D.C.: National Academy Press. http://www.nap.edu/catalog/11625.html
Evagorou, M., & Osborne, J. (2013). Exploring young students’ collaborative argumentation within a socioscientific issue.Journal of Research in Science Teaching, 50(2), 209-237. doi:10.1002/tea.21076
Furtak, E. M., Thompson, J., Braaten, M., & Windschitl, M. (2012). Learning progressions to support ambitious teaching practices. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions (pp. 405-433). Rotterdam, The Netherlands: Sense Publishers. doi:10.1007/978-94-6091-824-7_17
Goody, J. (1994). Entre l’oralite´ etl’e´criture. Paris: Presses universitaires de France.
Halliday, M. A. K., & Martin, J. R. (1993). Writing science: Literacy and discursive power. Pittsburgh: University of Pittsburgh Press. doi:10.1234/12345678
Jiménez -Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). ‘Doing the lesson’ or ‘doing science’: Argument in high school genetics. Science Education, 84(3), 287-312. doi:10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F
Kelly, G. J., & Greene, J. (1998). The social nature of knowing: Toward a sociocultural perspective on conceptual change and knowledge construction. In B. Guzzetti & C. Hynd (Eds.), Perspectives on conceptual change: Multiple ways to understand knowing and learning in a complex world (pp. 145-181). Mahway, NJ: Lawrence Erlbaum.
King, P. M., & Kitchener, K. S. (2004). Reflective judgment: Theory and research on the development of epistemic assumptions through adulthood. Educational Psychology, 39, 5-18. doi:10.1207/s15326985ep3901_2
Kolstø, S. D. (2001). To trust or not to trust, … —pupils’ ways of judging information encountered in a socio-scientific issue.International Journal of Science Education, 23, 877-901. doi:10.1002/sce.1011
Kuhn, D. (1991). The skills of argument. Cambridge, England: Cambridge University Press.
Kuhn, D., & Udell, W. (2003). The development of argument skills. Child development, 74(5), 1245-1260. doi:10.1111/1467-8624.00605
Kuhn, D., & Udell, W. (2007). Coordinating own and other perspectives in argument. Thinking & Reasoning, 13(2), 90-104. doi:10.1080/13546780600625447
Kuhn, D., Goh, W., Iordanou, K., & Shaenfield, D. (2008). Arguing on the computer: A microgenetic study of developing argument skills in a computer-supported environment. Child Development, 79(5), 1310-1328. doi:10.1111/j.1467-8624.2008.01190.x
McNeill, K. L. (2011). Elementary students' views of explanation, argumentation and evidence and abilities to construct arguments over the school year. Journal of Research in Science Teaching, 48(7), 793-823. doi:10.1002/tea.20430
McNeill, K. L., Corrigan, S., Barber, J., Goss, M., & Knight, A. M. (2012, March). Designing student assessments for understanding, constructing and critiquing arguments in science. Poster presented at the annual meeting of the National Association for Research in Science Teaching, Indianapolis, IN.
McNeill, K. L., & Krajcik, J. (2007). Middle school students’ use of appropriate and inappropriate evidence in writing scientific explanations. In M. Lovett & P. Shah (Eds.), Thinking with data: The proceedings of the 33rd Carnegie symposium on cognition. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
McNeill, K. L., & Krajcik, J. (2012). Supporting grade 5-8 students in constructing explanations in science: The claim, evidence and reasoning framework for talk and writing. New York, NY: Pearson Allyn & Bacon.
McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students’ construction of scientific explanations by fading scaffolds in instructional materials. Journal of the Learning Sciences, 15(2), 153-191. doi:10.1207/s15327809jls1502_1
McNeill, K. L., & Pimentel, D. S. (2010). Scientific discourse in three urban classrooms: The role of the teacher in engaging high school students in argumentation. Science Education, 94(2), 203-229. doi:10.1002/sce.20364
Michaels, S., O’Connor, C., & Resnick, L. (2008). Deliberative discourse idealized and realized: Accountable talk in the classroom and in civic life. Studies in Philosophy and Education, 27, 283-297. doi:10.1007/s11217-007-9071-1
Miles, M., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd edition). Thousand Oaks, CA: Sage.
NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020. doi:10.1002/tea.20035
Patronis, T., Potari, D., & Spiliotopoulou, V. (1999). Students’ argumentation in decision-making on a socio-scientific issue: Implications for teaching. International Journal of Science Education, 21, 745-754. doi:10.1080/095006999290408
Rivard, L. P., & Straw, S. B. (2000). The effect of talk and writing on learning science. An exploratory study. Science Education, 84, 566-593. doi:10.1002/1098-237X(200009)84:5<566::AID-SCE2>3.0.CO;2-U
Rogers, S., Busch, K. C., & Berland, L. K. (2012, March) Variation in how individuals argue about scientific and socioscientific questions. Paper presented at the NARST 2012 Annual International Conference, Indianapolis, IN.
Ryu, S., & Sandoval, W. (2008). Interpersonal influences on collaborative argument during scientific inquiry. Paper presented at the Paper Presented at the American Educational Research Association (AERA), March 24-29. doi:10.1002/sce.21006
Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41, 513-536. doi:10.1002/tea.20009
Sadler, T. D., & Donnelly, L. A. (2006). Socioscientific argumentation: The effects of content knowledge and morality.International Journal of Science Education, 28(12), 1463-1488. doi:10.1080/09500690600708717
Sadler, T. D., & Fowler, S. R. (2006). A threshold model for content knowledge transfer for socioscientific argumentation.Science Education, 90(6), 986-1004. doi:10.1002/sce.20165
Sadler, T. D., & Zeidler, D. L. (2005). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89(1), 71-93. doi:10.1002/sce.20023
Sampson, V., & Clark, D. B. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447-472. doi:10.1002/sce.20276
Sampson, V., & Clark, D. (2009). A comparison of the collaborative scientific argumentation practices of two high and two low performing groups. Research in Science Education, 61(1), 63-97. doi:10.1002/sce.20306
Sampson, V. Grooms, J., & Walker, J. P. (2010). Argument-driven inquiry as a way to help students learn how to participate in scientific argumentation and craft written arguments: An exploratory study. Science Education, 95(2), 217-157. doi:10.1002/sce.20421
Sandoval, W. A. (2003). Conceptual and epistemic aspects of students’ scientific explanations. Journal of the Learning Sciences, 12, 5-51. doi:10.1207/S15327809JLS1201_2
Sandoval, W. A., & Millwood, K. A. (2005). The quality of students’ use of evidence in written scientific explanations.Cognition and Instruction, 23(1), 23-55. doi:10.1207/s1532690xci2301_2
Sandoval, W. A., & Reiser, B. J. (1997). Evolving explanations in high school biology. Paper presented at the annual meeting of the American Educational Research Association, Chicago. doi:10.1002/sce.10130
Schwarz, B. B., Neuman, Y., Gil, J., & Ilya, M. (2003). Construction of collective and individual knowledge in argumentative activity. Journal of the Learning Sciences, 12(2), 219-256. doi:10.1207/S15327809JLS1202_3
Schweingruber, H., Keller, T., & Quinn, H. (Eds.). (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. National Academies Press.
Tishman, S., & Perkins, D. (1997). The language of thinking. Phi Delta Kappan, 78, 368-374.
Varelas, M., Pappas, C. C., Kane, J. M., & Arsenault, A. (2008). Urban primary-grade children think and talk science: Curricular and instructional practices that nurture participation and argumentation. Science Education, 92, 65-95. doi:10.1002/sce.20232
Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39, 35-62. doi:10.1002/tea.10008