(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 865-889 | DOI: 10.12973/ijese.2015.281a | Article Number: ijese.2015.035
Published Online: October 10, 2015
Abstract
This paper reports a predominantly qualitative classroom study on cooperative learning about nature of science (NOS) using a case from the history of science. The purpose of the research was to gain insight into how students worked with the historical case study during cooperative group work, how students and teachers assessed the teaching unit, and in what ways students’ ideas about selected aspects of NOS changed as a result of the teaching unit. In cooperation with two biology teachers, a four-lesson teaching unit about NOS and the early research on Archaeopteryx was developed, field-tested, modified, and tested again. Altogether, five classes of 10th and 11th grade students from two Swiss schools participated. Data were collected by videotaping group work, interviews with student groups and teachers, questionnaires, and pre- and post-tests about NOS conceptions. Results show that group work was mostly of good quality, both with regard to students’ cooperation and understanding of the case study. Second, both the topic and the instructional design of the unit were judged very positively. Third, students showed more informed views on the selected target NOS aspects after the teaching unit. The paper ends with conclusions regarding teaching and learning about NOS, cooperative learning and questions for future research.
Keywords: nature of science, history of science, Archaeopteryx, classroom-based research, Cooperative Learning
References
Abd-El-Khalick, F. (2006). Over and over and over again: College students’ views of nature of science. In L. B. Flick, & N. G. Lederman (Eds.), Scientific inquiry and nature of science. Implications for teaching, learning, and teacher education (pp. 389–426). Dordrecht: Springer.
Abd-El-Khalick, F. (2013). Teaching with and about nature of science, and science teacher knowledge domains. Science & Education, 22(9), 2087–2107.
Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 82(4), 417–436.
Abd-El-Khalick, F., & Lederman, N. G. (2000). The influence of history of science courses on students’ views of nature of science. Journal of Research in Science Teaching, 37(10), 1057–1095.
Akerson, V. L., & Abd-El-Khalick, F. (2003). Teaching elements of nature of science: A yearlong case study of a fourth-grade teacher. Journal of Research in Science Teaching, 40(10), 1025–1049.
Allchin, D. (2012). The Minnesota Case Study Collection: New historical inquiry case studies for nature of science education. Science & Education, 21, 1263–1281.
Bartholomew, H., Osborne, J., & Ratcliffe, M. (2004). Teaching students ‘ideas-about-science’: Five dimensions of effective practice. Science Education, 88(5), 655–682.
Bell, R. L. (2006). Perusing Pandora’s box. Exploring the what, when, and how of nature of science instruction. In L. B. Flick, & N. G. Lederman (Eds.), Scientific inquiry and nature of science. Implications for teaching, learning, and teacher education(pp. 427–446). Dordrecht: Springer.
Bell, R. L., Mulvey, B. K., & Maeng, J. L. (2012). Beyond understanding: Process skills as a context for nature of science instruction. In M. S. Khine (Ed.), Advances in nature of science research: Concepts and methodologies (pp. 225–245). Dordrecht: Springer.
Bennett, J., Lubben, F., Hogarth, S., & Campbell, B. (2004). A systematic review of the use of small-group discussions in science teaching with students aged 11-18, and their effects on students’ understanding in science or attitude to science. London: EPPI-Centre, Social Science Research Unit, Institute of Education, University of London.
Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, 2(2), 141–178.
Clough, M. P. (1997). Strategies and activities for initiating and maintaining pressure on students’ naive views concerning the nature of science. Interchange, 28(2–3), 191–204.
Clough, M. P. (2011). The story behind the science: Bringing science and scientists to life in post-secondary science education. Science & Education, 20, 701–717.
Clough, M. P., & Olson, J. K. (2008). Teaching and assessing the nature of science: An introduction. Science & Education, 17(2–3), 143–145.
Cohen, E. G. (1994). Restructuring the classroom: Conditions for productive small groups. Review of Educational Research, 64(1), 1–35.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
Davidson, N., & Worsham, T. (Eds.). (1992). Enhancing thinking through cooperative learning. New York: Teacher's College Press.
Edelson, D. C. (2002). Design-research: What we can learn when we engage in design. The Journal of the Learning Sciences, 11(1), 105–121.
Erduran, S., & Jiménez-Aleixandre, M. P. (Eds.). (2008). Argumentation in science education. Perspectives from classroom-based research. Dordrecht: Springer.
Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin's Argument Pattern for studying science discourse. Science Education, 88(6), 915–933.
Guerra, A., Braga, M., & Reis, J. C. (2012). History, philosophy, and science in a social perspective: A pedagogical project.Science & Education, online first, DOI: 10.1007/s11191-012-9501-5.
Hanuscin, D. L. (2013). Critical incidents in the development of pedagogical content knowledge for teaching the nature of science: A prospective elementary teacher’s journey. Journal of Science Teacher Education, online first; DOI: 10.1007/s10972-013-9341-4.
Hertz-Lazarowitz, R., & Miller, N. (Eds.). (1992). Interaction in cooperative groups. The theoretical anatomy of group learning. Cambridge: Cambridge University Press.
Hofheinz, V. (2008). Erwerb von Wissen über ‘Nature of Science’. Eine Fallstudie zum Potenzial impliziter Aneignungsprozesse in geöffneten Lehr-Lern-Arrangements am Beispiel von Chemieunterricht. Dissertation, Universität Siegen, Siegen.
Hogan, K. (1999). Sociocognitive roles in science group discourse. International Journal of Science Education, 21(8), 855–882.
Hogan, K., Nastasi, B. K., & Pressley, M. (1999). Discourse patterns and collaborative scientific reasoning in peer and teacher-guided discussions. Cognition and Instruction, 17(4), 379–432.
Höttecke, D., Henke, A., & Riess, F. (2012). Implementing history and philosophy in science teaching: Strategies, methods, results and experiences from the European HIPST project. Science & Education, 21, 1233–1261.
Irwin, A. R. (2000). Historical case studies: Teaching the nature of science in context. Science Education, 84(1), 5–26.
Jiménez-Aleixandre, M.-P., Bugallo Rodríguez, A., & Duschl, R. A. (2000). ‘Doing the lesson’ or ‘doing science’: Argument in high school genetics. Science Education, 84, 747–792.
Johnson, D. W., & Johnson, R. T. (1992). Encouraging thinking through constructive controversy. In N. Davidson & T. Worsham (Eds.), Enhancing thinking through cooperative learning (pp. 120–137). New York: Teacher's College Press.
Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(3), 291–310.
Laugksch, R. (2000). Scientific literacy: A conceptual overview. Science Education, 84(1), 71–94.
Leach, J., Hind, A., & Ryder, J. (2003). Designing and evaluating short teaching interventions about the epistemology of science in high school classrooms. Science Education, 87(6), 831–848.
Lederman, N. G. (2006). Syntax of nature of science whithin inquiry and science instruction. In L. B. Flick, & N. G. Lederman (Eds.), Scientific inquiry and nature of science. Implications for teaching, learning, and teacher education (pp. 301–318). Dordrecht: Springer.
Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell, & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831–879). Mahwah, NJ/London: Erlbaum.
Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497–521.
Lin, H.-S., & Chen, C.-C. (2002). Promoting preservice chemistry teachers’ understanding about the nature of science through history. Journal of Research in Science Teaching, 39(9), 773–792.
Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills: Sage.
Matthews, M. R. (2012). Changing the focus: From nature of science (NOS) to features of science (FOS). In M. S. Khine (Ed.), Advances in nature of science research (pp. 3–26). Dordrecht etc.: Springer.
McComas, W. F. (2008). Seeking historical examples to illustrate key aspects of the nature of science. Science & Education, 17(2–3), 249–263.
McRobbie, C., & Tobin, K. (1997). A social constructivist perspective on learning environments. International Journal of Science Education, 19(2), 193–208.
Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis. An expanded sourcebook (2. ed.). Thousand Oaks / London / New Delhi: Sage.
Millar, R., & Osborne, J. (Eds.). (1998). Beyond 2000: Science education for the future. London: School of Education, King’s College.
Nussbaum, E. M. (2008). Collaborative discourse, argumentation, and learning: Preface and literature review.Contemporary Educational Psychology, 33, 345–359.
Oliveira, A. W., Akerson, V. L., Colak, H., Pongsanon, K., & Genel, A. (2012). The implicit communication of nature of science and epistemology during inquiry discussion. Science Education, 96(4), 652–684.
Oliveira, A. W., & Sadler, T. D. (2008). Interactive patterns and conceptual convergence during student collaborations in science. Journal of Research in Science Teaching, 45(5), 634–658.
Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What ‘ideas-about-science’ should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720.
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.
Ozgelen, S., Yilmaz-Tuzun, O., & Hanuscin, D. L. (2013). Exploring the development of preservice science teachers’ views on the nature of science in inquiry-based laboratory instruction. Research in Science Education, 43, 1551–1570.
Paraskevopoulou, E., & Koliopoulos, D. (2011). Teaching the nature of science through the Millikan-Ehrenhaft dispute.Science & Education, 20(10), 943–960.
Rudge, D. W., & Howe, E. M. (2009). An explicit and reflective approach to the use of history to promote understanding of the nature of science. Science & Education, 18, 561–580.
Sadler, T. D. (2006). Promoting discourse and argumentation in science teacher education. Journal of Science Teacher Education, 17(4), 323–346.
Schaake, S. (2011). Die Natur der Naturwissenschaften verstehen lernen: Historische, gesellschaftliche und kulturell relevante Stationen für den Chemieunterricht (Reihe Studium und Forschung; Bd. 17). Kassel: kassel university press.
Schwartz, R. S., & Crawford, B. A. (2006). Authentic scientific inquiry as context for teaching nature of science: Identifying critical elements for success. In L. B. Flick, & N. G. Lederman (Eds.), Scientific inquiry and nature of science. Implications for teaching, learning, and teacher education (pp. 331–356). Dordrecht: Springer.
Schwartz, R. S., & Lederman, N. G. (2002). ‘It’s the nature of the beast’: The influence of knowledge and intentions on learning and teaching nature of science. Journal of Research in Science Teaching, 39(3), 205–236.
Schweizerische Konferenz der kantonalen Erziehungsdirektoren (1994). Rahmenlehrplan für die Maturitätsschulen. Bern: EDK.
Sharan, S. (1990). Cooperative learning: A perspective on research and practice. In S. Sharan (Ed.), Cooperative learning. Theory and research (pp. 285–300). New York: Praeger.
Shaver, J. P. (1993). What statistical significance testing is, and what it is not. The Journal of Experimental Education, 61(4), 293–316.
Shipman, H. L. (2006). Inquiry learning in college classrooms: For the times, they are, a changing. In L. B. Flick, & N. G. Lederman (Eds.), Scientific inquiry and nature of science. Implications for teaching, learning, and teacher education (pp. 357–387). Dordrecht: Springer.
Slavin, R. E. (1995). Cooperative learning. Theory, research, and practice (2nd ed.). Boston, Mass.: Allyn and Bacon.
Smith, M. U., & Scharmann, L. (2008). A multi-year program developing an explicit reflective pedagogy for teaching pre-service teachers the nature of science by ostention. Science & Education, 17, 219–248.
Tao, P.-K. (2003). Eliciting and developing junior secondary students’ understanding of the nature of science through a peer collaboration instruction in science stories International Journal of Science Education, 25(2), 147–171.
Teixeira, E. S., Greca, I. M., & Freire Jr, O. (2012). The history and philosophy of science in physics teaching: A research synthesis of didactic interventions. Science & Education, 21, 771–796.
Wells, G., Chang, G. L. M., & Maher, A. (1990). Creating classroom communities of literate thinkers. In S. Sharan (Ed.),Cooperative learning. Theory and research (pp. 95–121). New York: Praeger.
Yin, R. (2003). Case study research: Design and methods (3ed., Applied Social research Methods Series; 5). Thousand Oaks / London / New Delhi: Sage.
Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35–62.