(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 813-827 | DOI: 10.12973/ijese.2015.278a | Article Number: ijese.2015.032
Published Online: October 10, 2015
Abstract
The purpose of this study is to investigate whether or not conceptions of learning diverge in different science domains by identifying high school students’ conceptions of learning in physics, chemistry and biology. The Conceptions of Learning Science (COLS) questionnaire was adapted for physics (Conceptions of Learning Physics, COLP), chemistry (Conceptions of Learning Chemistry, COLC) and biology (Conceptions of Learning Biology, COLB) firstly and they were separately administered to 361 high school students at the same time. The factor structures of each questionnaire were also analyzed by exploratory factor analysis. The differences between students’ conceptions of learning in each questionnaire factors of all three domains were analyzed with paired-samples t-test. The results indicated differences in high school students’ conceptions of learning physics, chemistry and biology which were identified for all seven factors except application. In general sense, it was found that students preferred higher-level conceptions of learning biology more when compared with physics and chemistry domains. Possible implications about how students prefer to view learning from a higher-level perspective rather than a lower-level perspective, especially the ones with a high mean score in physics and chemistry (such as memorizing, preparing for exam and calculating and practicing) are discussed.
Keywords: conceptions of learning, domain difference, culture, science domain, high school students
References
Asikainen, H., Virtanen, V., Parpala, A. & Lindblom-Ylänne, S. (2013). Understanding bioscience students' conceptions of learning in the 21th century. International Journal of Educational Research, 62, 36-427.
Bahcivan, E. & Kapucu, S. (2014). Turkish pre-service elementary science teachers’ conceptions of learning science and science teaching efficacy belief: Is there a relationship? International Journal of Environmental & Science Education, 9(4), 429 4
Brooks, D. C. (2010). Space matters: The impact of formal learning environments on student learning. British Journal of Educational Technology, 42 (5), 719-726.
Buehl, M.M., & Alexander, P.A. (2001). Beliefs about academic knowledge. Educational Psychology Review, 13, 325-351.
Burnett, P. C., Pillay, H., & Dart, B. C. (2003). The influences of conceptions of learning and learner self-concept on high school students’ approaches to learning. School Psychology International, 24, 54–66.
Büyüköztürk, S. (2011). Sosyal bilimler için veri analizi el kitabı: İstatistik, araştırma deseni, SPSS uygulamaları ve yorum.[Manual data analysis for the social sciences: statistics, research design, SPSS application and interpretation]. Ankara, Pegem.
Cano, F. (2005). Epistemological beliefs and approaches to learning: Their change through secondary school and their influence on academic performance. British Journal of Educational Psychology, 75(2), 203. doi: 10.1348/000709904X22683.
Chen, J. A.& Pajares, F. (2010). Implicit theories of ability of grade 6 science students: Relation to epistemological beliefs and academic motivation and achievement in science. Contemporary Educational Psychology, 35(1), 75-87.
Chin, C., & Brown, D.E. (2000). Learning in science: A comparison of deep and surface Approaches. Journal of Research in Science Teaching, 37, 109–138.
Chiou, G-L., Lee, M-H. & Tsai, C-C. (2013). High school students’ approaches to learning physics with relationship to epistemic views on physics and conceptions of learning physics, Research in Science & Technological Education, 31(1), 1-15, doi: 10.1080/02635143.2013.794134.
Chiou, G-L., Liang, J-C. & Tsai, C-C., (2012). Undergraduate students’ conceptions of and approaches to learning biology: A study of their structural models and gender differences. International Journal of Science Education, 34(2), 167–195. doi: 10.1080/09500693.2011.558131.
Cokluk, Ö., Sekercioğlu, G., & Büyüköztürk, S. (2010). Sosyal bilimler için çok değişkenli istatistik. tek ve çok değişkenli dağılımlar için sayıltıların analizi, lojistik regresyon analizi, diskriminant regresyon analizi, küme analizi, açımlayıcı faktör analizi, doğrulayıcı faktör analizi, yol analizi.[Multivariate statistics for the social sciences. Univariate and multivariate analysis of assumptions for distributions, logistic regression analysis, discriminant regression analysis, cluster analysis, exploratory factor analysis, confirmatory factor analysis, path analysis]. Ankara, Pegem.
Dart, B. C., Burneet,P.C., Purdie, N., Boulton-Lewis,G., J. Campbell,J., & Smith,D. (2000). Students’ conceptions of learning, the classroom environment and approaches to learning. Journal of Educational Research, 93, 262–270.
Demir, R. ,Öztürk, N., & Dökme, İ. (2012). Investigation of 7th grade primary school students’ motivation towards science and technology course in terms of some variables. Mehmet Akif Ersoy University Journal of Education Faculty, 23, 1 - 2
Dikmenli, M., & Cardak, O. (2010). A study on biology student teachers’ conceptions of learning. Procedia Social and Behavioral Sciences, 2, 933–937. doi: 10.1080/09500690701191425.
Duarte, A.M. (2007). Conceptions of learning and approaches to learning in Portuguese students. Higher Education, 54, 781-794.
Dweck, C.S. (1999). Self-theories: Their role in motivation, personality, and development. Philadelphia: Psychology Press.
Eklund-Myrskog, G. (1998). Students’ conceptions of learning in different educational contexts. Higher Education, 35 (3): 299–316. doi:10.1023/A:1003145613005.
Field, A. (2000). Discovering statistics using SPSS for windows: Advanced techniques for the beginner. London: Sage.
Garnett, P., Garnett, P. & Hackling, M. (1995). Students’ alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25, 69-95.
Hançer, A.H., Uludağ, N., &Yılmaz, A. (2007). The evaluation of the attitudes of science teacher candidates towards chemistry lesson. Hacettepe University Education Faculty Journal, 32, 100-109.
Hegarty-Hazel, E., & Prosser, M. (1991). Relationship between students‟ conceptual knowledge and study strategies. Part 1: Student learning in physics. International Journal of Science Education, 13, 303-312.
Henning, M. A., & Shulruf, B. (2011). Academic achievement: Changes in motivational beliefs and self-regulated learning strategies over time. Psychologia, 54 (3), 135-144.
Herrnstein, R. J., & Murray, C. (1994). The bell curve: Intelligence and class structure in American life. New York: Free Press.
Karasar, N. (1999). Bilimsel Araştırma Yöntemi Kavramlar,Teknikler,İlkeler [Research Methods Concepts, Techniques, Principles] Ankara, Nobel.
Kember, D., Biggs, J., & Leung, D. Y. P. (2004). Examining the multidimensionality of approaches to learning through the development of a revised version of the Learning Process Questionnaire. British Journal of Educational Psychology, 74,261-280.
Lee, M-H., Johanson, R. E., & Tsai, C-C. (2008). Exploring Taiwanese high school students’ conceptions of and approaches to learning science through a structural equation modeling analysis. Science Education, 92(2), 191–220. doi: 10.1002/sce.20245.
Li, J. (2001). Chinese conceptualization of learning. Ethos, 29, 111–137. doi:10.1525/ eth.2001.29.2.111.
Li, J. (2003). U.S. and Chinese cultural beliefs about learning. Journal of Educational Psychology, 95, 258–267. doi:10.1037/0022-0663.95.2.258.
Li, J., & Chun, C.K. (2012). Effects of learning strategies on student reading literacy performance. The Reading Matrix,12(1), 30-38.
Li, W. T., Liang, J. C., & Tsai, C. C. (2013). Relational analysis of college chemistry- major students’ conceptions of and approaches to learning chemistry. Chemistry Education Research and Practice, 14, 555–565. doi:10.1039/c3rp00034f.
Liang, J-C. & Tsai, C-C. (2010). Relational analysis of college science‐major students’ epistemological beliefs toward science and conceptions of learning science. International Journal of Science Education, 32(17), 2273-2289.
Lin, T.C., Liang, J.C., & Tsai. C-C. (2015). Conceptions of memorizing and understanding in learning, and self-efficacy held by university biology majors. International Journal of Science Education, 37(3), 446-468, doi: 10.1080/09500693.2014.992057
Lin, T-J. & Tsai, C-C. (2013). An investigation of Taiwanese high school students’ science learning self-efficacy in relation to their conceptions of learning science. Research in Science & Technological Education, 31(3), 308-323, doi:10.1080/02635143.2013.841673.
Marton, F., & Säljö, R. (1984) The experience of learning, in Marton, F., Hounsell, D. & Entwistle, N. (eds.), Approaches to Learning, Edinburgh: Scottish Academic Press, 36-55.
Marton, F., Dall’Alba, G., & Beaty,E. (1993). Conceptions of learning. International Journal of Educational Research, 19,277–299.
Marton, F., Wen, Q., & Nagle, A. (1996). Views on learning in different cultures. Comparing patterns in China and Uruguay.Anales de Psicologia, 12(2), 123-32.
Nalçacı, İ.Ö., Akarsu, B., & Kariper, A.İ. (2011). Bilimin Doğası ve Bilim Tarihi Dersinin Fen Bilgisi Öğretmen Adaylarının Bilimin Dogası Hakkındaki Bilgi ve Görüşlerine
Etkisi [Effects Of The Nature Of Science Course On Science Prospective Teachers’ Knowledge And Opinions]. Selçuk Üniversitesi Ahmet Keleşoğlu Eğitim Fakültesi Dergisi [Selcuk University Ahmet Kelesoglu Education Faculty Journal], 32, 337-352.
Norton, L.S. & Crowley, C.M. (1995) Can students be helped to learn how to learn? An evaluation of an approach to learning programme for first year degree students. Higher Education, 29, 307-328.
Ozdamar, K. (1999). Paket programlar ile istatistiksel veri analizi. [Statistical data analysis with the package program].Eskisehir, Kaan.
Pillay, H., Purdie, N. & Boulton-Lewis, G. (2000). Investigating cross-cultural variations in conceptions of learning and the use of self-regulated strategies. Education Journal 28(1), 65–84.
Purdie, N., Hattie, J., & Douglas, G. (1996). Student conceptions of learning and their use of self-regulated learning strategies: a cross-cultural comparison. Journal of Educational Psychology, 88, 87–100.
Reyes, M.R., Brackett, M.A., Rivers, S. E., White, M., & Salovey, P. (2012). Classroom emotional climate, student engagement and academic achievement. Journal of Educational Psychology, 104(3), 700-712. doi: 10.1037/a0027268.
Rivkin, Steven G., Eric A. Hanushek., & John F., Kain. (2005). Teachers, schools, and academic achievement. Econometrica,73(2), 417-458.
Rowden Quince, B. (2013). The effects of self-regulated learning strategy instruction and structured-diary use on students' self- regulated learning conduct and academic success in online community-college general education courses. Doctoral Dissertations. Paper 68. University of San Francisco.
Sadi,Ö., & Dağyar, M. (2015). High school students’ epistemological beliefs, conceptions of learning and self-efficacy for learning biology: A Study of Their Structural Models. Eurasia Journal of Mathematics, Science and Technology Education, 11(5), 1061-1079 (doi: 10.12973/eurasia.2015.1375a)
Sadi,Ö., & Lee, M.H. (2015). The Conceptions of learning science for science-mathematics groups and literature-mathematics groups in Turkey. Research in Science & Technological Education, 33 (2) 182-196 (doi: 10.1080/02635143.2014.996543)
Sadi,Ö., & Uyar, M. (2014). The Turkish adaptation of the conceptions of learning science questionnaire: The study of validity and reliability. Journal of Educational and Instructional Studies in the World, 4(2), 73-82.
Sadi,Ö., & Uyar, M. (2013). Relationship between self-efficacy, self-regulated learning strategies and achievement: A path model. Journal of Baltic Science Education, 12(1):21-33.
Saljo, R. (1979). Learning in the learner’s perspective I: Some commonsense conceptions. Gothenburg, Sweden: Institute of Education, University of Gothenburg.
Schommer, M. (1998). The influence of age and education on epistemological beliefs. British Journal of Educational Psychology, 68, 551–562.
Schommer-Aikins, M. (2004). Explaining the epistemological belief system: Introducing the embedded systemic model and coordinated research approach. Educational Psychologist, 39, 19-29. doi: 10.1207/s15326985ep3901_3
Sinatra, G.M. (2001). Knowledge, beliefs, and learning. Educational Psychology Review, 13, 321-323.
Stevens, R. J., & Slavin, R. E. (1995). The cooperative elementary school: Effects on students' achievement, attitudes, and social relations. American Educational Research Journal, 32, 321-351.
Stevenson, H. W. & Lee, S.Y. (1990). Contexts of achievement: a study of American, Chinese and Japanese children.Monographs for the Society for Research in Child Development, 55(1-2), 1-123.
Stevenson, H.W., & Stigler, J.W. (1992). The learning gap: Why our schools are failing and what we can learn from Japanese and Chinese education. New York: Summit Books.
Tekbıyık, A.& Akdeniz, A.R. (2010). Bağlam Temelli ve Geleneksel Fizik Problemlerinin Karşılaştırılması Üzerine Bir İnceleme [An Investigation on the Comparison of
Context Based and Traditional Physics Problems]. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi [Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education], 4(1), 123-140.
Tsai, C. C., & Kuo, Pi-Chu. (2008). Cram school students’ conceptions of learning and learning science in Taiwan.International Journal of Science Education, 30(3), 353-375.
Tsai, C-C. (2004). Conceptions of learning science among high school students in Taiwan: A phenomenographic analysis.International Journal of Science Education, 26(14), 1733–1750. doi: 10.1080/0950069042000230776.
Tsai, C-C., Ho, H. N. J., Liang, J.C., & Lin, H.M. (2011). Scientific epistemic beliefs, conceptions of learning science and self-efficacy of learning science among high school students. Learning and Instruction, 21, 757-769.
Tweed, R. G., & Lehman, D. R. (2002). Learning considered within a cultural context: Confucian and Socratic approaches.American Psychologist, 57, 89-99.
Vermunt, J. D., & Vermetten., Y. J. (2004). Patterns in student learning: Relationships between learning strategies, conceptions of learning, and learning orientations. Educational Psychology Review, 16 (4), 359–384.
Watkins, D., & Regmi, M. (1992). How universal are student conceptions of learning? A Nepalese investigation: Psychologia. An International Journal of Psychology in the Orient, 35(2), 101-110.
Yang, Y. F. & Tsai, C. C. (2010). Conceptions of and approaches to learning through online peer assessment. Learning and Instruction, 20(1), 72-83. http://dx.doi.org/10.1016/j.learninstruc.2009.01.003