(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 853-863 | Article Number: ijese.2018.075
Published Online: December 18, 2018
Abstract
This study aimed to explore the factors that contribute to students’ misconceptions in light and optical instruments concept. Misconceptions impede the students’ conceptual understanding of science learning. Misconceptions are considered to have occurred if the students’ understanding of a concept differs from what is understood by the scientific community. An analysis of the literature reveals that everyday experiences, language used, teachers and textbooks are the main factors contributing to students’ misconceptions of light and optical instruments in science learning. By analyzing these factors, it would make sense to minimize the contributing factors that might help promote the students to achieve conceptual understanding in light and optical instruments concept.
Keywords: literature review, misconceptions, light and optical instruments, science learning
References
Abraham, M. R., Grzybowski, E. B., Renner, J. W., & Marek, E. A. (1992). Understandings and misunderstandings of eighth graders of five chemistry concepts found in textbooks. Journal of research in science teaching, 29(2), 105-120. https://doi.org/10.1002/tea.3660290203
Agnes, D., Kaniawati, I., & Danawan, A. (2015). Analisis Deskriptif Tes Tiga Tingkat Materi Optika Geometri dan Alat Optik [Descriptive Analysis Three-Tier Test Geometry Optics and Optical Instruments]. Prosiding Simposium Nasional Inovasi dan Pembelajaran Sains, 597-600.
Awan, A. S. (2013). Comparison between Traditional Text-book Method and Constructivist Approach in Teaching the Concept’Solution’. Journal of Research & Reflections in Education, 7(1), 41-51
Arnaudin, M. W., & Mintzes, J. J. (1985). Students’ alternative conceptions of the human circulatory system: A cross‐age study. Science Education, 69(5), 721-733. https://doi.org/10.1002/sce.3730690513
Alao, S., & Guthrie, J.T. (1999). Predicting conceptual understanding with cognitive and motivational variables. The Journal of Educational Research, 92, 243–254. https://doi.org/10.1080/00220679909597602
Allen, M. (2014). Misconceptions in primary science. UK: McGraw-Hill Education.
Ausubel, D. P. (1963). The psychology of meaningful verbal learning. New York, NY: Grune& Straton.
Bahar, M. (2003). Misconceptions in biology education and conceptual change strategies. Educational Sciences: Theory & Practice, 3(1), 55-64.
Bilgin, I. (2006). Promoting pre-service elementary students’ understanding of chemical equilibrium through discussions in small groups. International Journal of Science and Mathematics Education, 4(3), 467-484. https://doi.org/10.1007/s10763-005-9015-6
Bilgin, I., & Geban, Ö. (2006). The effect of cooperative learning approach based on conceptual change condition on students’ understanding of chemical equilibrium concepts. Journal of Science Education and Technology, 15(1), 31-46. https://doi.org/10.1007/s10956-006-0354-z
Boz, Y. (2006). Turkish pupils’ conceptions of the particulate nature of matter. Journal of Science Education and Technology, 15(2), 203. https://doi.org/10.1007/s10956-006-9003-9
Campbell N. A., Reece J. B., Urry L. A., Cain M. L., Wasserman S. A., & Minorsky P. V. (2017). Biology 11th ed. Jakarta. Penerbit Erlangga.
Çalik, M., Ayas, A., & Coll, R. K. (2009). Investigating the Effectiveness of an Analogy Activity in Improving Students’ Conceptual Change for Solution Chemistry Concepts. International journal of science and mathematics education, 7(4), 651-676. https://doi.org/10.1007/s10763-008-9136-9
Çepni, S., Taş, E., & Köse, S. (2006). The effects of computer-assisted material on students’ cognitive levels, misconceptions and attitudes towards science. Computers & Education, 46(2), 192-205. https://doi.org/10.1016/j.compedu.2004.07.008
Champagne, A. B., Klopfer, L. E., & Gunstone, R. F. (1983). Naive knowledge and science learning. Research in Science & Technological Education, 1(2), 173-183. https://doi.org/10.1080/0263514830010205
Chen, Y. L., Pan, P. R., Sung, Y. T., & Chang, K. E. (2013). Correcting Misconceptions on Electronics: Effects of a simulation-based learning environment backed by a conceptual change model. Journal of Educational Technology & Society, 16(2), 212-227.
Çibik, A., Diken, E. H., & Darçin, E. S. (2008). The effect of group works and demonstrative experiments based on conceptual change approach: Photosynthesis and respiration. Asia-Pacific Forum on Science Learning & Teaching, 9(2), 1-22.
De Jong, T., & Van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(2), 179–201. https://doi.org/10.3102/00346543068002179
Devetak, I., Vogrine, J., & Glazar, S. A. (2007). Assessing 16-year-old students’ understanding of aqueous solution at submicroscopic level. Research in Science Education, 39, 157–179. https://doi.org/10.1007/s11165-007-9077-2
Dikmenli, M. (2010). Misconceptions of cell division held by student teachers in biology: A drawing analysis. Scientific Research and Essays, 5(2), 235-247.
Driver, R., & Easley, J. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 61-84. https://doi.org/10.1080/03057267808559857
Dykstra, D. I., Boyle, C. F., & Monarch, I. A. (1992). Studying conceptual change in learning physics. Science Education, 76(6), 615-652. https://doi.org/10.1002/sce.3730760605
Erman, E. (2017). Factors contributing to students’ misconceptions in learning covalent bonds. Journal of Research in Science Teaching, 54(4), 520-537. https://doi.org/10.1002/tea.21375
Gabel, D. (1998). The complexity of chemistry and implications for teaching. International handbook of science education, 1, 233-248. https://doi.org/10.1007/978-94-011-4940-2_15
Galili, I., Bendall, S., & Goldberg, F. (1993). The effects of prior knowledge and instruction on understanding image formation. Journal of research in science teaching, 30(3), 271-301. https://doi.org/10.1002/tea.3660300305
Galili, I., & Hazan, A. (2000). Learners’ knowledge in optics: interpretation, structure and analysis. International Journal of Science Education, 22(1), 57-88. https://doi.org/10.1080/095006900290000
Goldberg, F. M., & McDermott, L. C. (1987). An investigation of student understanding of the real image formed by a converging lens or concave mirror. American Journal of Physics, 55(2), 108-119. https://doi.org/10.1119/1.15254
Gudyanga, E., & Madambi, T. (2014). Pedagogics of chemical bonding in Chemistry; perspectives and potential for progress: The case of Zimbabwe secondary education. International Journal of Secondary Education, 2(1), 11-19. https://doi.org/10.11648/j.ijsedu.20140201.13
Gürel, D. K., & Eryilmaz, A. (2013). A content analysis of physics textbooks as a probable source of misconceptions in geometric optics. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 28(2), 234-245.
Hammer, D. (1996). More than misconceptions: Multiple perspectives on student knowledge and reasoning, and an appropriate role for education research. American Journal of Physics, 64(10), 1316-1325. https://doi.org/10.1119/1.18376
Heng, C. K., & Karpudewan, M. (2017). Facilitating Primary School Students’ Understanding of Water Cycle through Guided Inquiry-Based Learning. In Overcoming Students’ Misconceptions in Science (pp. 29-49). Springer, Singapore. https://doi.org/10.1007/978-981-10-3437-4_3
Jimoyiannis, A., & Komis, V. (2001). Computer simulations in physics teaching and learning: a case study on students’ understanding of trajectory motion. Computers & education, 36(2), 183-204. https://doi.org/10.1016/S0360-1315(00)00059-2
Kaltakci, D., & Eryilmaz, A. (2010). Sources of Optics Misconceptions. In G. Çakmakçı & M. F. TaĢar (Eds.), Contemporary Science Education Research: Learning and Assessment (pp.13-16). Ankara, Turkey: Pegem Akademi.
Konicek-Moran, R., & Keeley, P. (2015). Teaching for conceptual understanding in science. NSTA Press, National Science Teachers Association.
Kutluay, Y. (2005). Diagnosis of eleventh grade students’ misconceptions about geometric optic by a three-tier test (Unpublished master thesis), Middle East Technical University, Ankara.
Langley, D., Ronen, M., & Eylon, B. S. (1997). Light propagation and visual patterns: Preinstruction learners’ conceptions. Journal of Research in Science Teaching, 34(4), 399-424. https://doi.org/10.1002/(SICI)1098-2736(199704)34:4<399::AID-TEA8>3.0.CO;2-M
Ling, T. W. (2017). Fostering Understanding and Reducing Misconceptions about Image Formation by a Plane Mirror Using Constructivist-Based Hands-on Activities. In Overcoming Students’ Misconceptions in Science (pp. 203-222). Springer Singapore. https://doi.org/10.1007/978-981-10-3437-4_11
Manolas, E., & Leal Filho, W. (2011). The use of cooperative learning in dispelling student misconceptions on climate change. Journal of Baltic Science Education, 10(3), 168-182.
MoEC (Ministry of Education and Culture). (2017). Ilmu Pengetahuan Alam untuk SMP/MTs Kelas 8 [Science for Grade 8 Junior High School]. Jakarta: Kementerian Pendidikan dan Kebudayaan.
Moosa, S. (2015). The use of simulations in supporting grade 10 learners from under-performing Dinaledi schools in Soweto to eliminate their misconceptions on simple electric circuits (Doctoral dissertation). University of Johannesburg, South Africa.
Nakhleh, M. B. (1992). Why some students do not learn chemistry: Chemical misconceptions. Journal of chemical education, 69(3), 191-196. https://doi.org/10.1021/ed069p191
Nieswandt, M. (2007). Student Affect and Conceptual Understanding in Learning Chemistry. Journal of Research in Science Teaching, 44(7), 908–937. https://doi.org/10.1002/tea.20169
National Science Teacher Association. (2015). Teaching For Conceptual Understanding. USA: David Beacom, Publisher.
Osborne, R. J., Bell, B. F., & Gilbert, J. K. (1983). Science teaching and children’s views of the world. European Journal of Science Education, 5(1), 1-14. https://doi.org/10.1080/0140528830050101
Osman, K. (2017). Addressing Secondary School Students’ Misconceptions about Simple Current Circuits Using the Learning Cycle Approach. In Overcoming Students’ Misconceptions in Science (pp. 223-242). Springer, Singapore. https://doi.org/10.1007/978-981-10-3437-4_12
Ozmen, H. (2004). Some student misconception in chemistry: A literature review of chemical bonding. Journal of Science Education and Technology, 13, 147–159. https://doi.org/10.1023/B:JOST.0000031255.92943.6d
Pompea, S. M., Dokter, E. F., Walker, C. E., & Sparks, R. T. (2007). Using misconceptions research in the design of optics instructional materials and teacher professional development programs. In Education and Training in Optics and Photonics. Optical Society of America. https://doi.org/10.1364/ETOP.2007.EMC2
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227. https://doi.org/10.1002/sce.3730660207
Puk, T., & Stibbards, A. (2011). Growth in Ecological Concept Development and Conceptual Understanding in Teacher Education: The Discerning Teacher. International Journal of Environmental and Science Education, 6(3), 191-211.
Ramnarain, U., & Moosa, S. (2017). The Use of Simulations in Correcting Electricity Misconceptions of Grade 10 South African Physical Sciences Learners. International Journal of Innovation in Science and Mathematics Education, 25(5), 1-20.
Ray, A. M., & Beardsley, P. M. (2008). Overcoming student misconceptions about photosynthesis: A model-and inquiry-based approach using aquatic plants. Science Activities: Classroom Projects and Curriculum Ideas, 45(1), 13-22. https://doi.org/10.3200/SATS.45.1.13-22
Saputri, D. F., & Nurussaniah, N. (2015). Penyebab Miskonsepsi Pada Optika Geometris [Causes of Misconceptions in Geometric Optics]. Prosiding Seminar Nasional Fisika (E-journal), 4, 33-36.
Satilmiş, Y. (2014). Misconceptions about Periodicity in Secondary Chemistry Education: The Case of Kazakhstan. International Online Journal of Primary Education, 3(2), 53-58.
Saul, J., & Redish, E. F. (1999). A comparison of pre and post FCI results for innovative and traditional introductory calculus-based physics classes. APS Southeastern Section Meeting Abstract.
Smith III, J. P., Disessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived: A constructivist analysis of knowledge in transition. The journal of the learning sciences, 3(2), 115-163. https://doi.org/10.1207/s15327809jls0302_1
Suniati, N. M. S., Sadia, I. W., & Suhandana, G. A. (2013). Pengaruh Implementasi Pembelajaran Kontekstual Berbantuan Multimedia Interaktif Tehadap Penurunan Miskonsepsi (Studi Kuasi Eksperimen Dalam Pembelajaran Cahaya Dan Alat Optik Di SMP Negeri 2 Amlapura) [Effect of Implementation of Assisted Contextual Learning Interactive Multimedia towards Misconceptions (Quasi Study Experiment in Light and Optical Instrument in SMP Negeri 2 Amlapura)]. Jurnal Administrasi Pendidikan Indonesia, 4(1).
Taber, K. S. (2009). Progressing science education: Constructing the scientific research programme into the contingent nature of learning science (Vol. 37). Springer Science & Business Media.
Taşlıdere, E. (2013). Effect of conceptual change oriented instruction on students’ conceptual understanding and decreasing their misconceptions in DC electric circuits. Creative Education, 4(4), 273-282. https://doi.org/10.4236/ce.2013.44041
Tobin, K., Tippins, D. J., & Gallard, A. J. (1994): Research on instructional strategies for teaching science. Handbook of research on science teaching and learning, 45, 93.
Thompson, F., & Logue, S. (2006). An exploration of common student misconceptions in science. International Education Journal, 7(4), 553-559.
Treagust, D., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353-1368. https://doi.org/10.1080/0950069032000070306
Tyson, L., Treagust, D. F., & Bucat, R. B. (1999). The complexity of teaching and learning chemical equilibrium. Journal of Chemical Education, 76(4), 554-558. https://doi.org/10.1021/ed076p554
Vosniadou, S. (2002). On the nature of naïve physics. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 61-76). Dordrecht, the Netherlands: Kluwer. https://doi.org/10.1007/0-306-47637-1_3
Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. Handbook of research on science teaching and learning (pp. 177-210). New York: Macmilan.
Widarti, H. R., Permanasari, A., & Mulyani, S. (2016). Student misconception on redox titration (a challenge on the course implementation through cognitive dissonance based on the multiple representations). Jurnal Pendidikan IPA Indonesia, 5(1), 56-62.
Yalcin, M., Altun, S., Turgut, U., & Aggül, F. (2009). First year Turkish science undergraduates’ understandings and misconceptions of light. Science & Education, 18(8), 1083-1093. https://doi.org/10.1007/s11191-008-9157-3
Yong, C. L., & Kee, C. Z. (2017). Utilizing concept cartoons to diagnose and remediate misconceptions related to photosynthesis among primary school students. In Overcoming Students’ Misconceptions in Science (pp. 9-27). Springer, Singapore. https://doi.org/10.1007/978-981-10-3437-4_2