(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 787-803 | Article Number: ijese.2018.070
Published Online: December 10, 2018
Abstract
Lack of positive outdoor experiences may lead a child to grow up perceiving that the natural world has little importance in our modern technology-based society; thus, they might not appreciate local wildlife or be interested in natural resource careers. To address this issue, we initiated a Student-Teacher-Scientist-Partnership (STSP) to enhance the knowledge and attitudes of students towards birdlife in South Texas. We developed a wild bird conservation curriculum aligned with state standards for use in K-12 classrooms. We assessed 6th (n=39) and 7th grade (n=52) students’ affinity, perceptions, and attitudes towards wildlife, birds, science, and nature prior to and after the program using a mixed methods design of open-ended questions and Likert-type statements. Student Likert-type statement responses were analyzed using an upper-tailed Sign test. We expected students to improve or respond more positively to their affinity, perceptions, and attitudes towards birds, wildlife, science, and nature in response to the curriculum. Students had a positive attitude towards wildlife and working with a scientist. Their perceptions towards habitat fragmentation and its effect on wildlife improved as well as their perceived knowledge of birds. Seventh grader attitudes improved towards their ability to identify birds, yet 6th grader attitudes remained similar. Lessons provided local students with an opportunity to integrate hands-on, kit-based wildlife science activities into the classroom to enhance their appreciation of wildlife. Students also had the opportunity to be outdoors while being introduced to the STEM (Science, Technology, Engineering, & Math) career of wildlife biology.
Keywords: K-12, kit-based, experiential, wildlife education, birds, scientist in the classroom
References
Adams, C. E., & Thomas, J. K. (1986). Wildlife education: present status and future needs. Wildlife Society Bulletin, 14(4), 79-486.
Adams, C. E., Thomas J. K., Newgard, L., & Cooper, C. (1987). How a biology curriculum affects students’ wildlife orientations. The American Biology Teacher, 49(4), 208-211. https://doi.org/10.2307/4448493
Atran, S., & Medin, D. (2008). The native mind and the cultural construction of nature. Massachusetts: MIT Press.
Awasthy, M., Popovic, A. Z., & Linklater, W. L. (2012). Experience in local urban wildlife research enhances a conservation education programme with school children. Pacific Conservation Biology, 18, 41-46. https://doi.org/10.1071/PC120041
Banilower, E. R., Smith, P. S., Weiss, I. R., Malzahn, K. A., Campbell, K. M., & Weis, A. M. (2013). Report of the 2012 National Survey of Science and Mathematics Education. North Carolina: Horizon Research, Inc.
Barthwal, S. C., & Mathur, V. B. (2012). Teacher’s knowledge of and attitude toward wildlife and conservation. Mountain Research and Development, 32, 169-175. https://doi.org/10.1659/MRD-JOURNAL-D-11-00040.1
Bestelmeyer, S. V., Elser, M. M., Spellman, K. V., Sparrow, E. B., Haan-Amato, S. S., & Keener, A. (2015). Collaboration, interdisciplinary thinking, and communication: new approaches to K-12 ecology education. Frontiers in Ecology and the Environment, 13(1), 37-43. https://doi.org/10.1890/140130
Britner, S. L., & Pajares, F. (2006). Sources of science self-efficacy beliefs of middle school students. Journal of Research in Science Teaching, 43(5), 485-499. https://doi.org/10.1002/tea.20131
Chall, J. S. (2000). The academic achievement challenge: what really works in the classroom? New York: Guilford Publications.
Chawla, L. (1999). Life paths into effective environmental action. Journal of Environmental Education, 31(1), 15-26. https://doi.org/10.1080/00958969909598628
Chawla, L. (2009a). Growing up green: becoming an agent of care for the natural world. The Journal of Developmental Processes, 4(1), 6-23.
Chawla, L. (2009b). Participation as capacity-building for active citizenship. Les Ateliers de l’ Ethique Spring issue.
Cidell, J. (2010). Content clouds as exploratory qualitative data analysis. Royal Geographic Society, 42(4), 514-523. https://doi.org/10.1111/j.1475-4762.2010.00952.x
Clason, D. L., & Dormody, T. J. (1994). Analyzing data measured by individual Likert-type items. Journal of Agricultural Education, 35(4), 31-35. https://doi.org/10.5032/jae.1994.04031
Common Core State Standards Initiative. (2015). Development Process. Retrieved from http://www.corestandards.org/about-the-standards/development-process/
Conner, L. D. C., & Danielson, J. (2016). Scientist role models in the classroom: how important is gender matching? International Journal of Science Education, 38(15), 2414-2430. https://doi.org/10.1080/09500693.2016.1246780
Conover, W. J. (1999). Practical nonparametric statistics. Third Edition. New York: John Wiley & Sons, Inc.
Corbin, J., & Strauss, A. (1990). Grounded theory research: procedures, canons, and evaluative criteria. Qualitative Sociology, 13(1), 3-21. https://doi.org/10.1007/BF00988593
Cornelius-White, J. (2007). Learner-centered teacher-student relationships are effective: a meta-analysis. Review of Educational Research, 77(1), 113-143. https://doi.org/10.3102/003465430298563
Council for Environmental Education (CEE). (2018). Project WILD. Retrieved from http://projectwild.org/
Cuevas, P., Okhee, L., Hart, J., & Deaktor R. (2005). Improving science inquiry with elementary students of diverse backgrounds. Journal of Research in Science Teaching, 42(3), 337-357. https://doi.org/10.1002/tea.20053
Dettmann-Easler, D., & Pease, J. L. (1999). Evaluating the effectiveness of residential environmental education programs in fostering positive attitudes toward wildlife. Journal of Environmental Education, 31(1), 33-39. https://doi.org/10.1080/00958969909598630
Dolan, E., & Tanner, K. (2005). Moving from outreach to partnership: striving for articulation and reform across the K-20+ science education continuum. Cell Biology Education, 4, 35-37. https://doi.org/10.1187/cbe.04-11-0048
Ernst, J. (2014). Early childhood educators’ use of natural outdoor settings as learning environments: an exploratory study of beliefs, practices, and barriers. Environmental Education Research, 20(6), 735-752. https://doi.org/10.1080/13504622.2013.833596
Evans, C. A., Abrams, E. D., Rock, B. N., & Spencer, S. L. (2001). Student/scientist partnerships: a teachers’ guide to evaluating the critical components. The American Biology Teacher, 63(5), 318-323. https://doi.org/10.2307/4451118
Fjortoft, I. (2001). The Natural Environment as a Playground for Children: The Impact of Outdoor Play Activities in Pre-Primary School Children. Early Childhood Education Journal, 29(2), 111-117. https://doi.org/10.1023/A:1012576913074
Foley, B. J., & McPhee, C. (2008). Students’ attitudes towards science in classes using hands-on or textbook based curriculum. American Educational Research Association, 1-12.
Gallagher, S. A. (1994). Middle school classroom predictors of science persistence. Journal of Research in Science Teaching, 31(7), 721-734. https://doi.org/10.1002/tea.3660310705
George, K. A., Slagle, K. M., Wilson, R. S., Moeller, S. J., & Bruskotter, J. T. (2016). Changes in attitudes towards animals in the United States from 1978 to 2014. Biological Conservation, 201(2016), 237-242. https://doi.org/10.1016/j.biocon.2016.07.013
Glaser B. G. (2016). Open coding descriptions. Grounded Theory Review: An International Journal, 15(2), 1556-1542.
Hayward, B. (2012). Children, citizenship and environment: nurturing a democratic imagination in a changing world. New York: Routledge. https://doi.org/10.4324/9780203106839
Hilton, T. L., & Lee, V. E. (1988). Student interest and persistence in science: changes in the educational pipeline in the last decade. Journal of Higher Education, 59(5), 510-526. https://doi.org/10.2307/1981701
Houseal, A. K., Abd-El-Khalick, F., & Destefano, L. (2013). Impact of a student-teacher-scientist partnership on students’ and teachers’ content knowledge, attitudes towards science, and pedagogical practices. Journal of Research in Science Teaching, 51(1), 84-115. https://doi.org/10.1002/tea.21126
Huxham, M., Welsh, A., Berry, A., & Templeton, S. (2006). Factors influencing primary school children’s knowledge of wildlife. Journal of Biological Education, 41, 9-12. https://doi.org/10.1080/00219266.2006.9656050
Jacobson, S. K., McDuff, M. D., & Monroe, M. C. (2006). Conservation Education and Outreach Techniques. New York: Oxford University Press Inc. https://doi.org/10.1093/acprof:oso/9780198567714.001.0001
Jones, M. T., & Eick, C. J. (2007). Implementing inquiry kit curriculum: obstacles, adaptations, and practical knowledge development in two middle school science teachers. Science Education, 91(3), 492-513. https://doi.org/10.1002/sce.20197
Kals, E., Schumacher, D., & Montada, L. (1999). Emotional affinity toward nature as a motivational basis to protect nature. Environment and Behavior, 31(2), 178-202. https://doi.org/10.1177/00139169921972056
Kellert, S. R. (2002). Experiencing Nature: Affective, Cognitive, and Evaluative Development, in Children and Nature: Psychological, Sociocultural, and Evolutionary Investigations. Massachusetts: MIT Press.
Laursen, S., Liston, C., Thiry, H., & Graf, J. (2007). What good is a scientist in the classroom? Participant outcomes and program design features for a short-duration science outreach intervention in K-12 classrooms. CBE-Life Sciences Education, 6, 49-64. https://doi.org/10.1187/cbe.06-05-0165
Lawless, J. G., & Rock, B. N. (1998). Student scientist partnerships and data quality. Journal of Science Education and Technology, 7(1), 5-13. https://doi.org/10.1023/A:1022575914118
LeCount, A. L., & Baldwin, K. L. (1986). The bear in the classroom. International Conference on Bear Research and Management, 6, 209-217. https://doi.org/10.2307/3872827
Ledley, T. S., Haddad, N., Lockwood, J., & Brooks, D. (2003). Developing meaningful student-teacher-scientist partnerships. Journal of Geoscience Education, 51(1), 91-95. https://doi.org/10.5408/1089-9995-51.1.91
Leopold, A. (1940). The state of the profession. Journal of Wildlife Management, 4(3), 343-346.
Leopold, A. (1942). The role of wildlife in a liberal education. Trans 7th NAWC, 485-489.
Louv, R. (2005). Last Child in the Woods. North Carolina: Algonquin Books.
Manfredo, M. J., Teel, T. L., & Henry, K. L. (2009). Linking society and environment: a multilevel model of shifting wildlife value orientations in the western United States. Social Science Quarterly, 90(2), 407-427. https://doi.org/10.1111/j.1540-6237.2009.00624.x
McCombs, B. L., & Whisler, J. S. (1997). The learner-centered classroom and school: strategies for increasing student motivation and achievement. The Jossey-Bass Education Series. California: Jossey-Bass Inc.
Morgan, J. M. (1992). A theoretical basis for evaluating wildlife-related education programs. The American Biology Teacher, 54(3), 153-157. https://doi.org/10.2307/4449436
Muller, M. M., Kals, E., & Pansa, R. (2009). Adolescents’’ emotional affinity toward nature: a cross-societal study. The Journal of Developmental Processes, 4(1), 59-69.
Next Generation Science Standards. (2015). Three Dimensions. Retrieve from http://www.nextgenscience.org/three-dimensions
Onwuegbuzie, A. J. (2000). Effect sizes in qualitative research. Annual Meeting of the Association of the Advancement of Educational Research, Ponte Verde, FL November. 34pp.
Owen, K., Murphy, D., & Parsons, C. (2009). ZATPAC: a model consortium evaluates teen programs. Zoo Biology, 28(2009), 429-446. https://doi.org/10.1002/zoo.20203
Paige, K., Lawes, H., Matejcic, P., Taylor, C., Stewart, V., Lloyd, D., Zeegers, Y., Roetman, P., & Daniels, C. (2010). “It felt like real science!” How operation Magpie enriched my classroom. Teaching Science - the Journal of the Australian Science Teachers Association, 56(4), 25-33.
Raaijmakers, Q. A. W., Van Hoof, A., Hart, H., Verbogt, T. F. M. A., & Vollebergh, W. A. M. (2000). Adolescents’ midpoint responses on Likert-type scale items: neutral or missing values? International Journal of Public Opinion Research, 12(2), 208-216. https://doi.org/10.1093/ijpor/12.2.209
Schultz, P. W., Shriver, C., Tabanico, J. J., & Khazian, A. M. (2004). Implicit connections with nature. Journal of Environmental Psychology, 24(2004), 31-42. https://doi.org/10.1016/S0272-4944(03)00022-7
Texas Public Schools Explorer. (2017). The Texas Tribune Texas Public Schools Explorer. Retrieved from https://schools.texastribune.org/
Tomanek, D. (2005). Building successful partnerships between K-12 and universities. Cell Biology Education, 4, 28-29. https://doi.org/10.1187/cbe.04-11-0051
US Census Bureau. (2010). 2010 Census. Retrieved from https://www.census.gov/2010census/
US Census Bureau. (2013). 2013 annual social and economic supplement. Washington, DC: US Census Bureau.
Van Raden, S. J. (2011). The effect of role models on the attitudes and career choices of female students enrolled in high school science (Unpublished Master’s Thesis). Portland State University.
Waller, P. (2011). Bringing endangered species to the classroom. The American Biology Teacher, 73(5), 277-279. https://doi.org/10.1525/abt.2011.73.5.6
Wellnitz, T., MacRury, N., Child, A., & Benson, D. (2002). Spreading the wealth: graduate students and educational outreach. Conservation Biology, 16(2), 560-563. https://doi.org/10.1046/j.1523-1739.2002.00428.x
Wilke, R. J., Peyton, R. B., & Hungerford, H. R. (1980). Strategies for the training of teachers in environmental education: a discussion guide for UNESCO training workshops on environmental education. Strategies for the training of teachers in environmental education, UNESCO.
Zaradic, P. A., & Pergams, O. R. W. (2007). Videophilia: implications for childhood development and conservation. The Journal of Developmental Processes, 2(1), 130-144.