(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 265-274 | Article Number: ijese.2018.023
Published Online: June 11, 2018
Abstract
Degradation of organic pollutants such as synthetic dyes, which have a deleterious effect on the lives of humans, has extensively become the aim of researches in today’s scientific world. Advanced oxidation processes (AOPs) such as photocatalysis has carried out, as useful methods for mineralizing organic pollutants in aqueous media via irradiating the nanocomposite by UV. In present work, MnFe2O4/ZrO2nanocomposite was prepared via impregnation technique and characterized by using XRD, FT-IR and SEM. The photocatalytic activity of the supported MnFe2O4 was examined via degradation of different dyes (Methylene Blue and Methyl Orange,), then some parameters such as pH, the amount of photocatalyst, irradiation time, temperature and oxygen flow were optimized in order to improve the reaction yield of destruction of different dyes. The obtained results confirmed that the prepared composite had a great photocatalytic and sonocatalytic activity against different dyes in aqueous media.
Keywords: MnFe2O4, ZrO2, impregnation, photocatalytic, nanocomposite, organic pollutants
References
Candeia, R. A., Souza, M. A. F, & Bernard, M. I. B. (2006). MgFe2O4 pigment obtained at low temperature. J. Mater. Res., 41, 183-190. https://doi.org/10.1016/j.materresbull.2005.07.019
Chen, N. S., Yang, X. J., Liu, E. S., & Huang, J. L. (2000). Reducing gas-sensing properties of ferrite compounds MFe2O4(M=Cu, Zn, Cd and Mg). J Sens Actuat. B., 66, 178-180. https://doi.org/10.1016/S0925-4005(00)00368-3
Dressellhaus, M. S., Lin, Y. M, Rabin, A. J. O., Filho, A. G. S., Pimenta, M. A., Saito, R., Samsonidze, G. G., & Dresselhaus, G. (2002). Nanowires and nanotubes. Mater. Sci, Eng. C., 1008, 1-12.
Fabiana, Y. O., Lucı́a, A. B., Santos E, & Cámara, O. R. (2001). Photoelectrochemical characterization of nanocrystalline TiO2 films on titanium substrates. J. Photochem. Photobiol. A. Chem., 146,175-188.
Gateshki, M., Petkov, V., & Pardhan, S.K. (2005). Structure of nanocrystalline MgFe2O4 fromX-ray diffraction, Rietveld and atomic pair distributionfunction analysis. J. Appl. Cryst., 38, 772-779. https://doi.org/10.1107/S0021889805024477
Ge, J., & Qu, J. (2004). Ultrasonic irradiation enhanced degradation of azo dye on MnO2. Appl Catal B: Environ., 47, 133-140. https://doi.org/10.1016/j.apcatb.2003.08.001
Geetha, D., & Ramesh, P. S. (2017). Development of CuO doped Cts/PEG/Ag nanocomposite and their photodegradation efficiency of MB under natural Sunlight. Materials Today: Proceedings, 4, 4434-4444. https://doi.org/10.1016/j.matpr.2017.04.015
Harada, H., Hosoki, C., & Kudo, A. (2001). Overall water splitting by sonophotocatalytic reaction: the role of powdered photocatalyst and an attempt to decompose water using a visible-light sensitive photocatalyst. J. Photochem. Photobiol. A: Chem. 141, 219-224. https://doi.org/10.1016/S1010-6030(01)00445-2
Kirchberg, K., Becker, A., Bloesser A, Weller T, Timm J, Suchomski C, & Marschall R. (2017). Stabilization of Monodisperse, Phase-pure MgFe Nanoparticles in Aqueous and Non-aqueous Media and Their Photocatalytic Behavior. J Phys Chem. C., 1-15.
Levec, J., & Pintar, A. (2007). Catalytic wet-air oxidation processes: A review. Catal Today., 124, 172-184. https://doi.org/10.1016/j.cattod.2007.03.035
Li, L., Wu, Q., Guo, Y., & Hu, C. (2005). Nanosize and bimodal porous polyoxotungstate–anatase TiO2composites: Preparation and photocatalytic degradation of organophosphorus pesticide using visible-light excitation. Micropor Mesopor Mater., 87, 1-9. https://doi.org/10.1016/j.micromeso.2005.07.035
Li, Q., Chen, Y., & Harris, V. G. (2018). Particle-size distribution modified effective medium theory and validation by magneto-dielectric Co-Ti substituted BaMferrite composites. J. Magn. Mater, 453, 44-47. https://doi.org/10.1016/j.jmmm.2018.01.013
Liu, C. P., Li, M. W., & Cui, Z. (2007). Comparative study of magnesium ferrite nanocrystallites prepared by sol–gel and co precipitation methods. J. Mater. Sci., 42, 6133-6138. https://doi.org/10.1007/s10853-006-1070-z
Mahato, D. K., & Banerjee, S. (2017). Dielectric characteristics of MgFe2O4 ferrite prepared by sol-gel auto-combustion method. Mat Today., 4(4), 5525-5531. https://doi.org/10.1016/j.matpr.2017.06.008
Mornet, S., Vasseir, S., Grasset, F., & Duguet, E. (2004). Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem., 14, 2161. https://doi.org/10.1039/b402025a
Okitsu, K., Iwasaki, K., Yobiko, Y., Bandow. H., Nishimura. R., & Maeda, Y. (2005). Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration OH radicals and azo dyes. Ultrson. Sonochem., 12, 255-262. https://doi.org/10.1016/j.ultsonch.2004.01.038
Petrier, C., & Suslick, K. (2000). Ultrasound-enhanced reactivity of calcium in the reduction of aromatic hydrocarbons. Ultrason. Sonochem., 7, 53-61. https://doi.org/10.1016/S1350-4177(99)00031-0
Pimachev, A., Kolesov, G., Chen, J., Wang, W., & Dahnovsky, Y. (2012). Internal relaxation in dye sensitized solar cells based on Zn2SnO4 nanostructures. J. Chem. Phys., 137, 244704-6. https://doi.org/10.1063/1.4772742
Salavati, H., & Kohestani, T. (2013) Preparation, characterization and photochemical degradation of dyes under UV light irradiation by inorganic–organic nanocomposite. Mater Sci Semicond Process., 16, 1904–1911. https://doi.org/10.1016/j.mssp.2013.07.014
Salavati, H., Tangestaninejad, S., Moghadam, M., Mirkhani, V., & Mohammadpoor-Baltork, I. (2011). Zirconia-supported Keggin phosphomolybdovanadate nanocomposite: A heterogeneous and reusable catalyst for alkene epoxidation under thermal and ultrasonic irradiation conditions. C R Chimie., 14, 588–596. https://doi.org/10.1016/j.crci.2011.03.003
Salavati, H., Tavakkoli, N., & Hosseinpoor, M. (2012). Preparation and characterization of polyphosphotungstate/ZrO2 nanocomposite and their sonocatalytic and photocatalytic activity under UV light illumination. Ultrason Sonochem., 19, 546–553. https://doi.org/10.1016/j.ultsonch.2011.09.001
Sepelak, V, Heitjans, P., & Becker, K. D. (2007). Nanoscale spinel ferrites prepared by mechanochemical route. J Therm Anal Calori., 90, 93-97. https://doi.org/10.1007/s10973-007-8481-1
Sepelak, V., Baabe, D., Mienert, D., & Litterst, F. J. (2003). Magnetisation in nanocrystalline high-energy milled MgFe2O4. J. Scr. Mater., 48, 961-966. https://doi.org/10.1016/S1359-6462(02)00600-0
Sheats, J. R. (2004). Manufacturing and commercialization issues in organic electronics. J Mat Res., 19, 1974-1989. https://doi.org/10.1557/JMR.2004.0275
Vautier, M., Guillard, C., & Herrmann, J.-M. (2001). Photocatalytic Degradation of Dyes in Water: Case Study of Indigo and of Indigo Carmine. J. Catal., 201, 46-59. https://doi.org/10.1006/jcat.2001.3232
Verma, S., Joy P. A, Khollam, Y. B., Potdar, H. S., & Deshpande S. B. (2004). Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method. J. Mater. Lett., 58, 1092-1095. https://doi.org/10.1016/j.matlet.2003.08.025
Wang, J., Sun, W., Zhang, Z., Zhang, X., Li, R., Ma, T., Zhang, P., & Li, Y. (2007). Sonocatalytic degradation of methyl parathion in the presence of micron-sized and nano-sized rutile titanium dioxide catalysts and comparison of their sonocatalytic abilities. J Mol Catal A: Chem., 272, 84–90. https://doi.org/10.1016/j.molcata.2007.03.018
Yang, Y., Wu, Q., Guo, Y., Hu, C., & Wang, E. (2005). Efficient degradation of dye pollutants on nanoporous polyoxotungstate–anatasecomposite under visible-light irradiation. J. Mol. Catal. A. 225, 203-212. https://doi.org/10.1016/j.molcata.2004.08.031
Zheng, F., & Zhu, Z. (2018). Preparation of the Au@TiO2 nanofibers by one-step electrospinning for the composite photoanode of dye-sensitized solar cells. Materials Chemistry and Physics., 218, 35-40. https://doi.org/10.1016/j.matchemphys.2018.01.021