(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 2327-2346 | Article Number: ijese.2017.157
Published Online: December 28, 2017
Abstract
Whilst the science education for the 21st century is meant to foster an engagement and an understanding of science in society and environmental problems, there is a need to examine those aspects and issues that are relevant (major issues, role of scientists and experts, role of the future...). However, little attention was paid to these concerns in the curriculum. Yet, young people’s views of the future reflect the sociopolitical concerns of the time (Hicks, 1996). In the present article, the purpose is to document to what extent students do agree with the statements about some environmental challenges (pollution, overuse of resources, global changes of the climate, future...) with a data from a questionnaire-based study involving students attending secondary school in France. This study forms part of a wider international survey, the Relevance of Science Education (ROSE) project, based at the University of Oslo. Our result show that French students are interesting in learning about pollution of water and air, but are not interesting in learning about practices that limit the effects of pollution and pesticides. Students seem to be unaware of the causal chain that is at the origin of pollution. Lange (2012) ensures the contribution of science partially to equip the citizen for democratic deliberation within particular contexts. However, environmental knowledge can be uncertain. This doubt maintains the democratic potential of the environmental issues, arousing controversies which are the lifestyle choices and the choices of society. Given these findings, we have to help students to build a relationship to the environment, more relevant on social and personal level, with more informed and located knowledge. A relationship renewed between humans and environment based on integrated designs of the future.
Keywords: gender, secondary schools, relationship to the environment, the Relevance of Science Education Project, engaging young people with environmental challenges
References
Académie de sciences (2004). Avis sur l’enseignement scientifique et technique dans la scolarité obligatoire: école et collège. [Review of scientific and technical education in compulsory education: school and college]. Paris: Académie des Sciences.
Aikenhead, G.S., & Ryan, A. (1992). The development of a new instrument: “Views On Science-Technology-Society” (VOSTS), Science Education, 76(5), 477-491.
Almeida, N. (2005). De l’environnement au développement durable, l’institution d’un objet et la configuration d’une question [From Environmental to sustainable development, the institution of an object and the configuration of a question]. Communication et organisation, 26. 12-24.
American Association for the Advancement of Science (AAAS) (1989). Science for all Americans: A project 2061 report on literacy goals in science, mathematics and technology. New York: Oxford University Press.
American Association for the Advancement of Science (AAAS) (1993). Benchmarks for Science Literacy. Author. [On-line] Available: http://www.project2061.org/
Asloum, N., & Kalali, F. (2013). Repères historico-critiques de l’évolution des curricula Prescrits de l’enseignement agricole et de l’éducation nationale. Cas de l’éducation au développement durable, Penser l’éducation, Hors série, 449-466.
Assemblée Nationale (2006). Réconcilier les jeunes et les sciences [Reconciling young people and science], (information report by Rolland, J.M., N°. 3061). Paris: Assemblée Nationale.
Boutet, M., (2003). L'éducation relative à l'environnement pour vaincre l'exclusion des jeunes en difficultés. In N. Rousseau, & L. Langlois (Eds), Vaincre l'exclusion scolaire et sociale des jeunes : Vers des modalités d'intervention actuelles et novatrices (pp. 63-84). Québec : Les Presses de l'Université du Québec.
Bowers, C.A. (2001). Educating for Eco-Justice and Community. Athens (GA): University of Georgia Press.
Canguilhem, G. (1965). La connaissance de la vie. Paris: Vrin.
Cohen, L, Manion, L. & Morrison, K. (2000). Research Methods in Education. London: Routledge Falmer.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hove & London: Lawrence Erlbaum associates.
Cohen, M. (1989). Connecting with nature-creating moments that let Earth teach. Eugene (OR): World Peace University.
Collomb, Ph., Gérin-Pace, F. & Berlan, M. (1993). Perceptions de l’environnement [Perceptions of environment], Population et Sociétés, p.280. ISSN 01847783.
Cooper, D.E. & Palmer, J.A, (Ed.) (1998). Spirit of the environment: religion, value and environmental concern. London: Routledge.
Dercourt, J. (2004). Les flux d’étudiants susceptibles d’accéder aux carrières de recherche. L’exemple de l’lle de France dans le cadre national [The flow of students considering careers in research. Example of lle de France in the national context]. EDP: Académie des Sciences.
European Commission (2004). Europe Needs More Scientists: Report by the High Level Group on Increasing Human Resources for Science and Technology in Europe. Brussels: European Commission Directorate C.
European Commission (2009). Challenging Futures of Science in Society: Emerging trends and cutting-edge issues. Brussels: European Commission.
Eckersley, R. (1994). A machine at the heart of the world: youth and the future. Paper for forum ‘Shaping Schools Futures’, Melbourne: Victoria.
Eckersley, R. (1999). Dreams and expectations: young people’s expected and preferred futures and their significance for education. Futures, 31, 73-90.
Gardner, P.L. (1995). Measuring attitudes to science: Unidimensionality and internal consistency revisited. Research in Science Education, 25(3), 283-289.
Gidley, J.M., & Hampson, G.P. (2005). The evolution of futures in school education, Futures, 37(4), 255-271.
Hicks, D. A. (1996). A lesson for the future: young people’s hopes and fears for tomorrow. Futures, 28(1), 1-13.
Hicks, D. A., & Holden, C. (1995). Visions of the future: why we need to teach for tomorrow. Staffordshire, England: Trentham Books.
Hicks, D. & Holden, C. (2007). Remembering the future: what do children think? Environmental Education Research, 13(4), 501-512.
Host, V. (1985). Théories de l'apprentissage et didactique des sciences. Annales de didactique des sciences, 1. Rouen : Presses de l'Université.
House of Lords (2006). Science teaching in schools: Report with evidence. London: The Stationary Office.
Hurd, P. D. (1986). Inventing science education for the new millennium. New York and London: Teachers College Press.
Hurd, P. D. (2002). Modernizing science education. Journal of Research in Science Teaching, 39, 3-9.
Jenkins, E.W. (2006). The Student Voice and School Science Education, Studies in Science Education, 42, 49-88.
Julien, M.P. , Chalmeau, R. , Vergnolle-Mainar, C. , Léna, J.Y & Calvet, A. (2014). « Concevoir le futur d'un territoire dans une perspective d'éducation au développement durable », VertigO - la revue électronique en sciences de l'environnement [En ligne], 14 (1). URL : http://vertigo.revues.org/14690. DOI : 10.4000/vertigo.14690
Kalali, F. (2010). L’enquête ROSE en France (Relevance Of Science Education): Analyse statistique des populations scolaires de Paris et de Créteil [The survey ROSE in France (Relevance Of Science Education): statistical analysis of school populations from Paris and Créteil] Retrieved from www.roseproject.no/network/countries/france/ROSE-Kalali.pdf
Lange, J.M. (2012). Education in sustainable development: How can science education contribute to the vulnerability perception? Research in Science Education, 42, 109-127.
Lehrke, M., Hofmann, L. & Gardner, P. L. (1985). Interests in science and technology education. Kiel: Institut für die Pädagogik der Naturwissenschaften.
Ministère de l’éducation nationale Français (MEN) (2005). Programmes des enseignements de mathématiques, de sciences de la vie et de la terre, de physique-chimie pour els classes du cycle central du collège (classes de cinquième et de quatrième) [Syllabus for teaching mathematics, life sciences and Earth, physics-chemistry (grade 7 and 8)]. BO 5, 25 Aout 2005.
Ministère de l’éducation nationale Français (MEN) (2007). Éducation au développement durable, 2e phase de généralisation de l’éducation au développement durable (EDD). [Second phase of generalization of ESD]. Bulletin Officiel, 14 du 5 avril 2007.
Ministère de l’éducation nationale Français (MEN) (2011). Troisième phase de généralisation de l’éducation au développement durable. [Third phase of generalization of ESD]. Circulaire n° 2011-186 du 24-10-2011.
National Research Council (1996). National science education standards, Washington DC: National Academy Press.
National Research Council (2013). Next Generation Science Standards: For States, By States, Washington DC: National Academy Press.
Millar, R. & Osborne, J. (Ed.). (1998). Beyond 2000: Science Education for the Future. London: School of Education, King's College.
Osborne, J.F. & Collins, S. (2001) Pupils’ views on the role and the value of the science curriculum: a focus-group study, International Journal of Science Education, 23, 5, 441-468.
Polak, F.L. (1973). The image of the future. Amsterdam : Elsevier Scientific Publishing Company
Sauvé, L. (1998). L’éducation relative à l’environnement et la perspective du développement durable. [ Environmental education and the sustainable development perspective]. Les cahiers du Millénaire trois, 4, 57-60.
Schibeci, R. A. (1984). Attitudes to science: an Update. Studies in Science Education, 11, 25-69.
Schreiner, C. & Sjøberg, S. (2004). Sowing the seeds of ROSE. Background, Rationale, Questionnaire Development and Data Collection for ROSE (The Relevance of Science Education) - a comparative study of students' views of science and science education (pdf) (Acta Didactica 4/2004). Oslo: Dept. of Teacher Education and School
Development, University of Oslo.
Schreiner, C., & Sjøberg, S. (2005). Empowered for action? How do young people relate to environmental challenges? Published in Alsop, S. Beyond Cartesian Dualism. Encountering Affect in the Teaching and Learning of Science. (pp. 53-69). Dordrecht: Springer, Science and Technology Education Library.
Sjøberg, S. & Schreiner, C. (2008). Concern for the environment. Data from ROSE. Oslo.
Sjøberg, S. & Schreiner, C. (2010). The ROSE project. An overview and key findings. Oslo. Available at: http://eacea.ec.europa.eu/education/eurydice.
Tamir, P. & Gardner, P.L. (1989). The structure of interest in high school biology, Research in Science & Technological Education, 9(2), 113-140.
Taylor, D. E. (1989). Blacks and the environment: Toward an explanation of the concern and action gap between Blacks and Whites. Environment and Behavior, 21(2), 175-205.
Thélot, C. (2004). Pour la réussite de tous les élèves [For the success of all students], Rapport
de la commission du débat national sur l’avenir de l’école, Paris : Documentation française.