(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 1317-1340 | Article Number: ijese.2017.079
Published Online: July 22, 2017
Abstract
Nanotechnology has opened a new era for the treatment and diagnosis of cancer, which is one of the leading causes of death in the 21st century. Using nanotechnology different engineered particles, known as naoparticles has born. Nanoparticles have provided several opportunities to deal with cancer in a more convenient way which are useful to overcome the drawbacks of the conventional cancer treating and diagnosing method. This article is an overview of the opportunities provided by nanotechnology, especially nanoparticles such as, liposomes, dendrimers, fullerenes, carbon nanotubes, solid lipid, paramagnetic and super paramagnetic, ceramic, gold, quantum dots, polymers to deal with cancer and the challenges needed to overcome for proper utilization of them.
Keywords: Nanoparticle, Nanotechnology, Opportunities, Challenges, Conventional.
References
Akash Yadav, M. G., Dinesh Kumar Jain. (2011). Nano-medicine based drug delivery system. Journal of Advanced Pharmacy Education & Research, 1(4), 201-213.
Al Saghie, A. (2013). Gastric Cancer: Environmental Risk Factors, Treatment and Prevention. Journal of Carcinogenesis & Mutagenesis, S14. doi: 10.4172/2157-2518.s14-008
Alexander-Bryant, A. A., Vanden Berg-Foels, W. S., & Wen, X. (2013). Bioengineering strategies for designing targeted cancer therapies. Adv Cancer Res, 118, 1-59. doi: 10.1016/B978-0-12-407173-5.00002-9
Alexis, F., Pridgen, E. M., Langer, R., & Farokhzad, O. C. (2010). Nanoparticle technologies for cancer therapy. Handb Exp Pharmacol(197), 55-86. doi: 10.1007/978-3-642-00477-3_2
Alexis, F., Rhee, J. W., Richie, J. P., Radovic-Moreno, A. F., Langer, R., & Farokhzad, O. C. (2008). New frontiers in nanotechnology for cancer treatment. Urol Oncol, 26(1), 74-85. doi: 10.1016/j.urolonc.2007.03.017
Almeida, J. P., Figueroa, E. R., & Drezek, R. A. (2014). Gold nanoparticle mediated cancer immunotherapy. Nanomedicine, 10(3), 503-514. doi: 10.1016/j.nano.2013.09.011
Amiji, M. M. (2011). Nanomedicine for cancer therapy. Pharm Res, 28(2), 181-186. doi: 10.1007/s11095-010-0261-0
Arruebo, M., Vilaboa, N., Saez-Gutierrez, B., Lambea, J., Tres, A., Valladares, M., & Gonzalez-Fernandez, A. (2011). Assessment of the evolution of cancer treatment therapies. Cancers (Basel), 3(3), 3279-3330. doi: 10.3390/cancers3033279
Arvizo, R., Bhattacharya, R., & Mukherjee, P. (2010). Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv, 7(6), 753-763. doi: 10.1517/17425241003777010
Asiyanbola, B., & Soboyejo, W. (2008). For the surgeon: an introduction to nanotechnology. J Surg Educ, 65(2), 155-161. doi: 10.1016/j.jsurg.2007.11.006
Bansal, S. S., Goel, M., Aqil, F., Vadhanam, M. V., & Gupta, R. C. (2011). Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev Res (Phila), 4(8), 1158-1171. doi: 10.1158/1940-6207.CAPR-10-0006
Bharali, D. J., Khalil, M., Gurbuz, M., Simone, T. M., & Mousa, S. A. (2009). Nanoparticles and cancer therapy: A concise review with emphasis on dendrimers. Int J Nanomedicine, 4, 1-7.
Bhattacharyya, S., Kudgus, R. A., Bhattacharya, R., & Mukherjee, P. (2011). Inorganic nanoparticles in cancer therapy. Pharm Res, 28(2), 237-259. doi: 10.1007/s11095-010-0318-0
Bikiaris, D. (2012). Nanomadicine in Cancer Treatment: Drug Targeting and the Safety of the Used Materials for Drug Nanoencapsulation. Biochemistry & Pharmacology: Open Access, 01(05). doi: 10.4172/2167-0501.1000e122
Birendra Kumar, P. Y., HC Goel, M Moshahid A Rizvi. (2009). Recent developments in cancer therapy by the use of nanotechnology. Digest Journal of Nanomaterials and Biostructures, 4(1), 1-12.
Bisht, S., Feldmann, G., Soni, S., Ravi, R., Karikar, C., Maitra, A., & Maitra, A. (2007). Polymeric nanoparticle-encapsulated curcumin ("nanocurcumin"): a novel strategy for human cancer therapy. J Nanobiotechnology, 5, 3. doi: 10.1186/1477-3155-5-3
Bisht, S., Mizuma, M., Feldmann, G., Ottenhof, N. A., Hong, S. M., Pramanik, D., . . . Maitra, A. (2010). Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer. Mol Cancer Ther, 9(8), 2255-2264. doi: 10.1158/1535-7163.MCT-10-0172
Boisseau, P., & Loubaton, B. (2011). Nanomedicine, nanotechnology in medicine. Comptes Rendus Physique, 12(7), 620-636. doi: 10.1016/j.crhy.2011.06.001
Boulaiz, H., Alvarez, P. J., Ramirez, A., Marchal, J. A., Prados, J., Rodriguez-Serrano, F., . . . Aranega, A. (2011). Nanomedicine: application areas and development prospects. Int J Mol Sci, 12(5), 3303-3321. doi: 10.3390/ijms12053303
C. Moorthi, R. M., K. Kathiresan. (2011). Nanotherapeutics to Overcome Conventional Cancer Chemotherapy Limitations. J Pharm Pharmaceut Sci, 14(1), 67-77.
Cai, W., Gao, T., Hong, H., & Sun, J. (2008). Applications of gold nanoparticles in cancer nanotechnology. Nanotechnology, Science and Applications, 17-32.
Can Wang, C. B., Shujing Liang, Hualin Fu, Kan Wang, Min Deng, Qiande Liao and Daxiang Cui. (2014). RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer. Nanoscale Res Lett, 9.
Carolina Salvador Morales, P. M. V., Anjali B. Thakkar, Edward Swanson, Robert Langer. (2012). Recent developments in multifunctional hybrid nanoparticles: opportunities and challenges in cancer therapy. Frontiers in Bioscience, 529-545.
Chandrasekhar P, S. M. S., Subhashis Debnath, Lava Kumar M,, & M, N. B. (2013). A review on latest trends in oncho nanotechnology. International Journal of Pharmaceutical Development & Technology, 3(2), 106-109.
Chang, Y.-N., Zhang, M., Xia, L., Zhang, J., & Xing, G. (2012). The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles. Materials, 5(12), 2850-2871. doi: 10.3390/ma5122850
Chen, Y., Lian, G., Liao, C., Wang, W., Zeng, L., Qian, C., . . . Shuai, X. (2013). Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION). Journal of Gastroenterology, 48(7), 809-821. doi: 10.1007/s005350120713x 10.1016/j.jconrel.2006.05.023)Google
Cheng, Z., Elias, D. R., Kamat, N. P., Johnston, E. D., Poloukhtine, A., Popik, V., . . . Tsourkas, A. (2011). Improved tumor targeting of polymer-based nanovesicles using polymer-lipid blends. Bioconjug Chem, 22(10), 2021-2029. doi: 10.1021/bc200214g
Chetan C. Anajwala, G. K. J., S.M. Vijayendra Swamy. (2010). Current Trends of Nanotechnology for Cancer Therapy. International Journal of Pharmaceutical Sciences and Nanotechnology, 3(3), 1043-1056.
Choi, Y. E., Kwak, J. W., & Park, J. W. (2010). Nanotechnology for early cancer detection. Sensors (Basel), 10(1), 428-455. doi: 10.3390/s100100428
Cridge, B. J., Larsen, L., & Rosengren, R. J. (2013). Curcumin and its derivatives in breast cancer: Current developments and potential for the treatment of drug-resistant cancers. Oncology Discovery, 1(1), 6. doi: 10.7243/2052-6199-1-6
Datta, R., & Jaitawat, S. S. (2006). Nanotechnology – The New Frontier of Medicine. Medical Journal Armed Forces India, 62(3), 263-268. doi: 10.1016/s0377-1237(06)80016-x
Deepak Godara, D. B. C., Dr. Sweta Musale, Gaurav Sharma, Dr. Naresh, & Kheman. (2012). Nanotechnology - A Recent approach in Cancer Treatment. Journal of Drug Research, 1(1), 24-36.
Dreaden, E. C., Austin, L. A., Mackey, M. A., & El-Sayed, M. A. (2012). Size matters: gold nanoparticles in targeted cancer drug delivery. Therapeutic Delivery, 3(4), 457-478. doi: 10.4155/tde.12.21
Elhissi, A. M., Ahmed, W., Hassan, I. U., Dhanak, V. R., & D'Emanuele, A. (2012). Carbon nanotubes in cancer therapy and drug delivery. J Drug Deliv, 2012, 837327. doi: 10.1155/2012/837327
Fang, M., Peng, C. W., Pang, D. W., & Li, Y. (2012). Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biol Med, 9(3), 151-163. doi: 10.7497/j.issn.2095-3941.2012.03.001
Ferrari, M. (2005). Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer, 5(3), 161-171. doi: 10.1038/nrc1566
Gannon, C. J., Patra, C. R., Bhattacharya, R., Mukherjee, P., & Curley, S. A. (2008). Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J Nanobiotechnology, 6, 2. doi: 10.1186/1477-3155-6-2
Gorka Orive, R. M. H., Alicia R. Gascón, José Luis Pedraz. (2005). Micro and nano drug delivery systems in cancer therapy. Cancer Therapy, 3(131-138).
Gunasekera, U. A., Pankhurst, Q. A., & Douek, M. (2009). Imaging applications of nanotechnology in cancer. Target Oncol, 4(3), 169-181. doi: 10.1007/s11523-009-0118-9
Gupta, S. C., Patchva, S., Koh, W., & Aggarwal, B. B. (2012). Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol, 39(3), 283-299. doi: 10.1111/j.1440-1681.2011.05648.x
Hobson, D. W. (2011). Nanotechnology. 683-697. doi: 10.1016/b978-0-08-088504-9.00228-2
Hong, H., Zhang, Y., Sun, J., & Cai, W. (2009). Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today, 4(5), 399-413. doi: 10.1016/j.nantod.2009.07.001
Hu, W. Q., Fang, M., Zhao, H. L., Yan, S. G., Yuan, J. P., Peng, C. W., . . . Li, J. D. (2014). Tumor invasion unit in gastric cancer revealed by QDs-based in situ molecular imaging and multispectral analysis. Biomaterials, 35(13), 4125-4132. doi: 10.1016/j.biomaterials.2014.01.059
Istvan J. Majoros, Brent B.Ward, K.-H., Lee, z. S. K. C., Baohua, Huang, A. M., and, & Baker, J. R. (2010). Progress in Cancer Nanotechnology (Vol. 95): Elsevier.
Jabir, N. R., Tabrez, S., Ashraf, G. M., Shakil, S., Damanhouri, G. A., & Kamal, M. A. (2012). Nanotechnology-based approaches in anticancer research. Int J Nanomedicine, 7, 4391-4408. doi: 10.2147/IJN.S33838
Jain, K. K. (2005). Nanotechnology in clinical laboratory diagnostics. Clin Chim Acta, 358(1-2), 37-54. doi: 10.1016/j.cccn.2005.03.014
Jain, K. K. (2010). Advances in the field of nanooncology. BMC Med, 8, 83. doi: 10.1186/1741-7015-8-83
Jain, S., Hirst, D. G., & O'Sullivan, J. M. (2012). Gold nanoparticles as novel agents for cancer therapy. Br J Radiol, 85(1010), 101-113. doi: 10.1259/bjr/59448833
Jakel, C. E., Vogt, A., Gonzalez-Carmona, M. A., & Schmidt-Wolf, I. G. (2014). Clinical studies applying cytokine-induced killer cells for the treatment of gastrointestinal tumors. J Immunol Res, 2014, 897214. doi: 10.1155/2014/897214
Jameel Ahmad Khan., R. A. K., Annamaria Szabolcs, Shamit Dutta, Enfeng Wang1, Sheng Cao, Geoffry L. Curran, Vijay Shah, Steven Curley, Debabrata Mukhopadhyay, J. David Robertson, Resham Bhattacharya, Priyabrata Mukherjee. (2011). Designing Nanoconjugates to Effectively Target Pancreatic Cancer Cells In vitro and In vivo. 6(6). doi: 10.1371/journal.pone.0020347.g001
Jiang, L., Li, X., Liu, L., & Zhang, Q. (2013). Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer. Nanoscale Res Lett, 8(1), 66. doi: 10.1186/1556-276X-8-66
Jiang, S., Gnanasammandhan, M. K., & Zhang, Y. (2010). Optical imaging-guided cancer therapy with fluorescent nanoparticles. J R Soc Interface, 7(42), 3-18. doi: 10.1098/rsif.2009.0243
Jin, S., & Labhasetwar, V. (2009). Nanotechnology in urology. Urol Clin North Am, 36(2), 179-188, viii. doi: 10.1016/j.ucl.2009.02.005
Johnson, L., Charles-Edwards, G., & Douek, M. (2010). Nanoparticles in sentinel lymph node assessment in breast cancer. Cancers (Basel), 2(4), 1884-1894. doi: 10.3390/cancers2041884
Jones, T., & Saba, N. (2011). Nanotechnology and drug delivery: an update in oncology. Pharmaceutics, 3(2), 171-185. doi: 10.3390/pharmaceutics3020171
Julien, D. C., Behnke, S., Wang, G., Murdoch, G. K., & Hill, R. A. (2011). Utilization of monoclonal antibody-targeted nanomaterials in the treatment of cancer. MAbs, 3(5), 467-478. doi: 10.4161/mabs.3.5.16089
Juzenas, P., Chen, W., Sun, Y. P., Coelho, M. A., Generalov, R., Generalova, N., & Christensen, I. L. (2008). Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev, 60(15), 1600-1614. doi: 10.1016/j.addr.2008.08.004
Kalevi Kairemo, P. E., Kim Bergström, and Ernest K.J. Pauwels. ( 2008). Nanoparticles in Cancer. Current Radiopharmaceuticals, 1, 30-36.
Kateb, B., Chiu, K., Black, K. L., Yamamoto, V., Khalsa, B., Ljubimova, J. Y., . . . Heiss, J. D. (2011). Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy? Neuroimage, 54 Suppl 1, S106-124. doi: 10.1016/j.neuroimage.2010.01.105
Kawasaki, E. S., & Player, A. (2005). Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine, 1(2), 101-109. doi: 10.1016/j.nano.2005.03.002
Khemtong, C., Kessinger, C. W., & Gao, J. (2009). Polymeric nanomedicine for cancer MR imaging and drug delivery. Chem Commun (Camb)(24), 3497-3510. doi: 10.1039/b821865j
Kim, K. Y. (2007). Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomedicine, 3(2), 103-110. doi: 10.1016/j.nano.2006.12.002
Kim, P. S., Djazayeri, S., & Zeineldin, R. (2011). Novel nanotechnology approaches to diagnosis and therapy of ovarian cancer. Gynecol Oncol, 120(3), 393-403. doi: 10.1016/j.ygyno.2010.11.029
Kim, S., Kim, J. H., Jeon, O., Kwon, I. C., & Park, K. (2009). Engineered polymers for advanced drug delivery. Eur J Pharm Biopharm, 71(3), 420-430. doi: 10.1016/j.ejpb.2008.09.021
Koo, O. M., Rubinstein, I., & Onyuksel, H. (2005). Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine, 1(3), 193-212. doi: 10.1016/j.nano.2005.06.004
Kostoff, R. N., Koytcheff, R. G., & Lau, C. G. Y. (2007). Global nanotechnology research literature overview. Technological Forecasting and Social Change, 74(9), 1733-1747. doi: 10.1016/j.techfore.2007.04.004
Laroui, H., Rakhya, P., Xiao, B., Viennois, E., & Merlin, D. (2013). Nanotechnology in diagnostics and therapeutics for gastrointestinal disorders. Dig Liver Dis, 45(12), 995-1002. doi: 10.1016/j.dld.2013.03.019
Leary, J. F. (2010). Nanotechnology: what is it and why is small so big? Can J Ophthalmol, 45(5), 449-456. doi: 10.3129/i10-089
Lee, M.-H., Lee, D.-H., Jung, S.-W., Lee, K.-N., Park, Y. S., & Seong, W.-K. (2010). Measurements of serum C-reactive protein levels in patients with gastric cancer and quantification using silicon nanowire arrays. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 78-83. doi: 10.1016/j.nano.2009.04.004
Lee, S. M., Ahn, R. W., Chen, F., Fought, A. J., O'Halloran, T. V., Cryns, V. L., & Nguyen, S. T. (2010). Biological evaluation of pH-responsive polymer-caged nanobins for breast cancer therapy. ACS Nano, 4(9), 4971-4978. doi: 10.1021/nn100560p
Lemke, C. D., Graham, J. B., Geary, S. M., Zamba, G., Lubaroff, D. M., & Salem, A. K. (2011). Chitosan is a surprising negative modulator of cytotoxic CD8+ T cell responses elicited by adenovirus cancer vaccines. Mol Pharm, 8(5), 1652-1661. doi: 10.1021/mp100464y
Levine, D. H., Ghoroghchian, P. P., Freudenberg, J., Zhang, G., Therien, M. J., Greene, M. I., . . . Murali, R. (2008). Polymersomes: a new multi-functional tool for cancer diagnosis and therapy. Methods, 46(1), 25-32. doi: 10.1016/j.ymeth.2008.05.006
Li-Feng Qi, Z.-R. X., Yan Li, Xia Jiang, Xin-Yan Han. (2005). In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World J Gastroenterol, 11(33), 5136-5141.
Li, X., Min, M., Du, N., Gu, Y., Hode, T., Naylor, M., . . . Chen, W. R. (2013). Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clin Dev Immunol, 2013, 387023. doi: 10.1155/2013/387023
Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A. (2010). Polymers for drug delivery systems. Annu Rev Chem Biomol Eng, 1, 149-173. doi: 10.1146/annurev-chembioeng-073009-100847
Liechty, W. B., & Peppas, N. A. (2012). Expert opinion: Responsive polymer nanoparticles in cancer therapy. Eur J Pharm Biopharm, 80(2), 241-246. doi: 10.1016/j.ejpb.2011.08.004
Lim, E. K., Jang, E., Lee, K., Haam, S., & Huh, Y. M. (2013). Delivery of cancer therapeutics using nanotechnology. Pharmaceutics, 5(2), 294-317. doi: 10.3390/pharmaceutics5020294
Lim, K. J., Bisht, S., Bar, E. E., Maitra, A., & Eberhart, C. G. (2014). A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biology & Therapy, 11(5), 464-473. doi: 10.4161/cbt.11.5.14410
Lin, A. Y., Almeida, J. P., Bear, A., Liu, N., Luo, L., Foster, A. E., & Drezek, R. A. (2013). Gold nanoparticle delivery of modified CpG stimulates macrophages and inhibits tumor growth for enhanced immunotherapy. PLoS One, 8(5), e63550. doi: 10.1371/journal.pone.0063550
Liu, C. W., & Lin, W. J. (2012). Polymeric nanoparticles conjugate a novel heptapeptide as an epidermal growth factor receptor-active targeting ligand for doxorubicin. Int J Nanomedicine, 7, 4749-4767. doi: 10.2147/IJN.S32830
Liu, D., & Chen, Z. (2013). The effect of curcumin on breast cancer cells. J Breast Cancer, 16(2), 133-137. doi: 10.4048/jbc.2013.16.2.133
Luk, B. T., Fang, R. H., & Zhang, L. (2012). Lipid- and polymer-based nanostructures for cancer theranostics. Theranostics, 2(12), 1117-1126. doi: 10.7150/thno.4381
Madani, S. Y., Naderi, N., Dissanayake, O., Tan, A., & Seifalian, A. M. (2011). A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomedicine, 6, 2963-2979. doi: 10.2147/IJN.S16923
Maehara, Y. (2003). S-1 in gastric cancer_ a comprehensive review. Gastric Cancer, 6, 2-8.
Mansoori, G. A., Brandenburg, K. S., & Shakeri-Zadeh, A. (2010). A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers (Basel), 2(4), 1911-1928. doi: 10.3390/cancers2041911
Mansoori, G. A., Mohazzabi, P., McCormack, P., & Jabbari, S. (2007). Nanotechnology in cancer prevention, detection and treatment: bright future lies ahead. 4, 226-257.
Manthe, R. L., Foy, S. P., Krishnamurthy, N., Sharma, B., & Labhasetwar, V. (2010). Tumor ablation and nanotechnology. Mol Pharm, 7(6), 1880-1898. doi: 10.1021/mp1001944
Master, A. M., & Sen Gupta, A. (2012). EGF receptor-targeted nanocarriers for enhanced cancer treatment. Nanomedicine (Lond), 7(12), 1895-1906. doi: 10.2217/nnm.12.160
McCarthy, J. R., Bhaumik, J., Karver, M. R., Sibel Erdem, S., & Weissleder, R. (2010). Targeted nanoagents for the detection of cancers. Mol Oncol, 4(6), 511-528. doi: 10.1016/j.molonc.2010.08.003
McNeil, S. E. (2005). Nanotechnology for the biologist. J Leukoc Biol, 78(3), 585-594. doi: 10.1189/jlb.0205074
Mei, L., Zhang, Z., Zhao, L., Huang, L., Yang, X. L., Tang, J., & Feng, S. S. (2013). Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev, 65(6), 880-890. doi: 10.1016/j.addr.2012.11.005
Meng, H., Xing, G., Blanco, E., Song, Y., Zhao, L., Sun, B., . . . Zhao, Y. (2012). Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells. Nanomedicine, 8(2), 136-146. doi: 10.1016/j.nano.2011.08.019
Mimeault, M., & Batra, S. K. (2011). Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy. Chin Med, 6, 31. doi: 10.1186/1749-8546-6-31
Misra, R., Acharya, S., & Sahoo, S. K. (2010). Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today, 15(19-20), 842-850. doi: 10.1016/j.drudis.2010.08.006
Mody, M. H. R. (2011 ). Cancer Nanotechnology: Recent Trends and Developments Internet Journal of Medical Update, 6(1), 3-7.
Mohs, A. M., & Provenzale, J. M. (2010). Applications of nanotechnology to imaging and therapy of brain tumors. Neuroimaging Clin N Am, 20(3), 283-292. doi: 10.1016/j.nic.2010.04.002
Mousa, S. A., & Bharali, D. J. (2011). Nanotechnology-based detection and targeted therapy in cancer: nano-bio paradigms and applications. Cancers (Basel), 3(3), 2888-2903. doi: 10.3390/cancers3032888
Mulens, V., Morales, M. d. P., & Barber, D. F. (2013). Development of Magnetic Nanoparticles for Cancer Gene Therapy: A Comprehensive Review. ISRN Nanomaterials, 2013, 1-14. doi: 10.1155/2013/646284
Nadine Schulte, M. P., Ebert Nicolai Härtel. (2014). Gastric Cancer: New Drugs – New Strategies. Gastrointest Tumors, 1, 180–194. doi: 10.1159/000380786
Nagahara, L. A., Lee, J. S., Molnar, L. K., Panaro, N. J., Farrell, D., Ptak, K., . . . Grodzinski, P. (2010). Strategic workshops on cancer nanotechnology. Cancer Res, 70(11), 4265-4268. doi: 10.1158/0008-5472.CAN-09-3716
Navedul haque, R. R. K., N. Parvez , S. Yadav4, N. Hwisa, & M. S. Al-Sharif, B. Z. A. a. K. M. (2010). Nanotechnology in Cancer Therapy: A Review. Journal of Chemical and Pharmaceutical Research, 2(5), 161-168.
Nie, S. (2010). Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond), 5(4), 523-528. doi: 10.2217/nnm.10.23
Panchapakesan, B., & Wickstrom, E. (2007). Nanotechnology for sensing, imaging, and treating cancer. Surg Oncol Clin N Am, 16(2), 293-305. doi: 10.1016/j.soc.2007.03.002
Parhi, P., Mohanty, C., & Sahoo, S. K. (2012). Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today, 17(17-18), 1044-1052. doi: 10.1016/j.drudis.2012.05.010
Park, J. H., Lee, S., Kim, J.-H., Park, K., Kim, K., & Kwon, I. C. (2008). Polymeric nanomedicine for cancer therapy. Progress in Polymer Science, 33(1), 113-137. doi: 10.1016/j.progpolymsci.2007.09.003
Patra, C. R., Bhattacharya, R., Mukhopadhyay, D., & Mukherjee, P. (2010). Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev, 62(3), 346-361. doi: 10.1016/j.addr.2009.11.007
Pautler, M., & Brenner, S. (2010). Nanomedicine: promises and challenges for the future of public health. Int J Nanomedicine, 5, 803-809. doi: 10.2147/IJN.S13816
Prasad, S., Cody, V., Saucier-Sawyer, J. K., Saltzman, W. M., Sasaki, C. T., Edelson, R. L., . . . Hanlon, D. J. (2011). Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell-based antitumor immunotherapy. Nanomedicine, 7(1), 1-10. doi: 10.1016/j.nano.2010.07.002
Qiao, W., Wang, B., Wang, Y., Yang, L., Zhang, Y., & Shao, P. (2010). Cancer Therapy Based on Nanomaterials and Nanocarrier Systems. Journal of Nanomaterials, 2010, 1-9. doi: 10.1155/2010/796303
QING LI, C. B., JEAN Y. LEE, and H. MICHAEL SHEPARD. (2001). A Novel Approach to Thymidylate Synthase as a Target for Cancer Chemotherapy. MOLECULAR PHARMACOLOGY, 59, 446-452.
Qu, J., Hou, Z., Han, Q., Zhang, C., Tian, Z., & Zhang, J. (2013). Poly(I:C) exhibits an anti-cancer effect in human gastric adenocarcinoma cells which is dependent on RLRs. Int Immunopharmacol, 17(3), 814-820. doi: 10.1016/j.intimp.2013.08.013
Rath, K. S., McCann, G. A., Cohn, D. E., Rivera, B. K., Kuppusamy, P., & Selvendiran, K. (2013). Safe and targeted anticancer therapy for ovarian cancer using a novel class of curcumin analogs. J Ovarian Res, 6(1), 35. doi: 10.1186/1757-2215-6-35
Retel, V. P., Hummel, M. J., & van Harten, W. H. (2009). Review on early technology assessments of nanotechnologies in oncology. Mol Oncol, 3(5-6), 394-401. doi: 10.1016/j.molonc.2009.05.001
Rigas, B. (2013). Curcumin enhances the lung cancer chemopreventive efficacy of phospho-sulindac by improving its pharmacokinetics. International Journal of Oncology, 43, 895-902. doi: 10.3892/ijo.2013.1995
Ryvolova, M., Chomoucka, J., Drbohlavova, J., Kopel, P., Babula, P., Hynek, D., . . . Kizek, R. (2012). Modern micro and nanoparticle-based imaging techniques. Sensors (Basel), 12(11), 14792-14820. doi: 10.3390/s121114792
Safari, J., & Zarnegar, Z. (2014). Advanced drug delivery systems: Nanotechnology of health design a review. Journal of Saudi Chemical Society, 18(2), 85-99. doi: 10.1016/j.jscs.2012.12.009
Sahoo, S. K., Parveen, S., & Panda, J. J. (2007). The present and future of nanotechnology in human health care. Nanomedicine, 3(1), 20-31. doi: 10.1016/j.nano.2006.11.008
Santos, I. S., Ponte, B. M., Boonme, P., Silva, A. M., & Souto, E. B. (2013). Nanoencapsulation of polyphenols for protective effect against colon-rectal cancer. Biotechnol Adv, 31(5), 514-523. doi: 10.1016/j.biotechadv.2012.08.005
Schoffski, P. (2002). New drugs for treatment of gastric cancer. Annals of Oncology, 13(suppl 4), 13-22. doi: 10.1093/annonc/mdf633
Sehdev, V., Katsha, A. M., Peng, D., Belkhiri, A., Soutto, M., Ecsedy, J., . . . El-Rifai, W. (2013). 933 AURKA-mediated Activation of HDM2 Regulates p53 in Upper Gastrointestinal Cancers. Gastroenterology, 144(5), S-167. doi: 10.1016/s0016-5085(13)60597-1
Sengupta, S., & Sasisekharan, R. (2007). Exploiting nanotechnology to target cancer. Br J Cancer, 96(9), 1315-1319. doi: 10.1038/sj.bjc.6603707
Sharma, A., Jain, N., & Sareen, R. (2013). Nanocarriers for diagnosis and targeting of breast cancer. Biomed Res Int, 2013, 960821. doi: 10.1155/2013/960821
Sharma, R. A., Gescher, A. J., & Steward, W. P. (2005). Curcumin: the story so far. Eur J Cancer, 41(13), 1955-1968. doi: 10.1016/j.ejca.2005.05.009
Shenoi, M. M., Shah, N. B., Griffin, R. J., Vercellotti, G. M., & Bischof, J. C. (2011). Nanoparticle preconditioning for enhanced thermal therapies in cancer. Nanomedicine (Lond), 6(3), 545-563. doi: 10.2217/nnm.10.153
Siddiqui, I. A., Adhami, V. M., Chamcheu, J. C., & Mukhtar, H. (2012). Impact of nanotechnology in cancer: emphasis on nanochemoprevention. Int J Nanomedicine, 7, 591-605. doi: 10.2147/IJN.S26026
Silva, G. A. (2006). Neuroscience nanotechnology: progress, opportunities and challenges. Nat Rev Neurosci, 7(1), 65-74. doi: 10.1038/nrn1827
Singhal, S., Nie, S., & Wang, M. D. (2010). Nanotechnology applications in surgical oncology. Annu Rev Med, 61, 359-373. doi: 10.1146/annurev.med.60.052907.094936
Sironmani, T. A. (2016). Therapeutic Potential of Neem Synthesized Silver Nanoparticles on Human Gastric Cancer Cells <i>in Vitro</i>. World Journal of Nano Science and Engineering, 06(02), 90-110. doi: 10.4236/wjnse.2016.62010
Stefan Peinert, W. G., Alexander Stein, Lutz P. Mu¨ller, Joern Ruessel, Wieland Voigt, Hans-Joachim Schmoll and Dirk Arnold. (2010). Safety and efficacy of weekly 5-fluorouracil/folinic acid/oxaliplatin/irinotecan in the first-line treatment of gastrointestinal cancer. Therapeutic Advances in Medical Oncology, 2(3), 161-174. doi: 10.1177/
Stern, S. T., Hall, J. B., Yu, L. L., Wood, L. J., Paciotti, G. F., Tamarkin, L., . . . McNeil, S. E. (2010). Translational considerations for cancer nanomedicine. J Control Release, 146(2), 164-174. doi: 10.1016/j.jconrel.2010.04.008
Sudhakar, A. (2009). History of Cancer, Ancient and Modern Treatment Methods. J Cancer Sci Ther, 1(2), 1-4. doi: 10.4172/1948-5956.100000e2
Teiten, M. H., Eifes, S., Dicato, M., & Diederich, M. (2010). Curcumin-the paradigm of a multi-target natural compound with applications in cancer prevention and treatment. Toxins (Basel), 2(1), 128-162. doi: 10.3390/toxins2010128
Teiten, M. H., Gaascht, F., Eifes, S., Dicato, M., & Diederich, M. (2010). Chemopreventive potential of curcumin in prostate cancer. Genes Nutr, 5(1), 61-74. doi: 10.1007/s12263-009-0152-3
Thakor, A. S., & Gambhir, S. S. (2013). Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin, 63(6), 395-418. doi: 10.3322/caac.21199
Thomas, D. G., Pappu, R. V., & Baker, N. A. (2011). NanoParticle Ontology for cancer nanotechnology research. J Biomed Inform, 44(1), 59-74. doi: 10.1016/j.jbi.2010.03.001
Tokuhara, T., Tanigawa, N., Matsuki, M., Nomura, E., Mabuchi, H., Lee, S. W., . . . Narabayashi, I. (2008). Evaluation of lymph node metastases in gastric cancer using magnetic resonance imaging with ultrasmall superparamagnetic iron oxide (USPIO): diagnostic performance in post-contrast images using new diagnostic criteria. Gastric Cancer, 11(4), 194-200. doi: 10.1007/s10120-008-0480-9
Trickler, W. J., Khurana, J., Nagvekar, A. A., & Dash, A. K. (2010). Chitosan and glyceryl monooleate nanostructures containing gemcitabine: potential delivery system for pancreatic cancer treatment. AAPS PharmSciTech, 11(1), 392-401. doi: 10.1208/s12249-010-9393-0
Veiseh, O., Kievit, F. M., Ellenbogen, R. G., & Zhang, M. (2011). Cancer cell invasion: treatment and monitoring opportunities in nanomedicine. Adv Drug Deliv Rev, 63(8), 582-596. doi: 10.1016/j.addr.2011.01.010
Vergaro, V., Scarlino, F., Bellomo, C., Rinaldi, R., Vergara, D., Maffia, M., . . . Leporatti, S. (2011). Drug-loaded polyelectrolyte microcapsules for sustained targeting of cancer cells. Adv Drug Deliv Rev, 63(9), 847-864. doi: 10.1016/j.addr.2011.05.007
Vladimir N. Anisimov, I. A. V., Andrei V. Panchenko1, Irina G. Popovich and, & Zabezhinski, M. A. (2012). Light-at-Night-Induced Circadian Disruption, Cancer and Aging Current Aging Science, 5, 170-177.
Wang, J. J., Zeng, Z. W., Xiao, R. Z., Xie, T., Zhou, G. L., Zhan, X. R., & Wang, S. L. (2011). Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine, 6, 765-774. doi: 10.2147/IJN.S17296
Wang, K., Wu, X., Wang, J., & Huang, J. (2013). Cancer stem cell theory: therapeutic implications for nanomedicine. Int J Nanomedicine, 8, 899-908. doi: 10.2147/IJN.S38641
Wang, K., Zhang, T., Liu, L., Wang, X., Wu, P., Chen, Z., . . . Huang, J. (2012). Novel micelle formulation of curcumin for enhancing antitumor activity and inhibiting colorectal cancer stem cells. Int J Nanomedicine, 7, 4487-4497. doi: 10.2147/IJN.S34702
Wang, R., Billone, P. S., & Mullett, W. M. (2013). Nanomedicine in Action: An Overview of Cancer Nanomedicine on the Market and in Clinical Trials. Journal of Nanomaterials, 2013, 1-12. doi: 10.1155/2013/629681
Wang, X., Wang, Y., Chen, Z. G., & Shin, D. M. (2009). Advances of cancer therapy by nanotechnology. Cancer Res Treat, 41(1), 1-11. doi: 10.4143/crt.2009.41.1.1
Wang, X., Yang, L., Chen, Z. G., & Shin, D. M. (2008). Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin, 58(2), 97-110. doi: 10.3322/CA.2007.0003
Wilken, R., Veena, M. S., Wang, M. B., & Srivatsan, E. S. (2011). Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer, 10, 12. doi: 10.1186/1476-4598-10-12
Xin, Z., Shuai Jiang, Peng Jiang, Xiaolong Yan, Chongxi Fan, Shouyin Di, Guiling Wu, Yang Yang, Russel J. Reiter, and Gang Ji. (2015). Melatonin as a treatment for gastrointestinal cancer: a review. Journal of Pineal Research, 58(4), 375-387. doi: Doi:10.1111/jpi.12227
Yallapu, M. M., Jaggi, M., & Chauhan, S. C. (2011). Design and engineering of nanogels for cancer treatment. Drug Discov Today, 16(9-10), 457-463. doi: 10.1016/j.drudis.2011.03.004
Yallapu, M. M., Maher, D. M., Sundram, V., Bell, M. C., Jaggi, M., & Chauhan, S. C. (2010). Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res, 3, 11. doi: 10.1186/1757-2215-3-11
Yan, J., Zheng, X., Liu, Z., Yu, J., Deng, Z., Xue, F., . . . Li, G. (2016). A multicenter study of using carbon nanoparticles to show sentinel lymph nodes in early gastric cancer. Surg Endosc, 30(4), 1294-1300. doi: 10.1007/s00464-015-4358-8
Ye, M. X., Li, Y., Yin, H., & Zhang, J. (2012). Curcumin: updated molecular mechanisms and intervention targets in human lung cancer. Int J Mol Sci, 13(3), 3959-3978. doi: 10.3390/ijms13033959
Ying Wu, W. W., Yinting Chen, Kaihong Huang, Xintao Shuai, Qikui Chen, Xuexian Li, Guoda Lian. (2010). The investigation of polymer-siRNA nanoparticle for gene therapy of gastric cancer in vitro. Int J Nanomedicine, 5, 129-136.
Yun-Peng Zhang, P. S., Xu-Rui Zhang, Wu-Li Yang and Cheng-Shuai Si. (2013). Synthesis of CdTe quantum dot-conjugated CC49 and their application for in vitro imaging of gastric adenocarcinoma cells. Nanoscale Res Lett, 8.
Zhang, W., Zhang, Z., & Zhang, Y. (2011). The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett, 6, 555. doi: 10.1186/1556-276X-6-555
Zhang, Z., Niu, B., Chen, J., He, X., Bao, X., Zhu, J., . . . Li, Y. (2014). The use of lipid-coated nanodiamond to improve bioavailability and efficacy of sorafenib in resisting metastasis of gastric cancer. Biomaterials, 35(15), 4565-4572. doi: 10.1016/j.biomaterials.2014.02.024