(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 13023-13032 | Article Number: ijese.2016.975
Published Online: December 16, 2016
Abstract
Small RNA including microRNA (miRNA) and Piwi-interacting RNA (piRNA) play important roles in germline maintenance and maturation in a wide variety of species. However, relatively little is known about the role of miRNA in male germline maturation in humans and other primates. Here, we focused on rhesus macaques, as a model primate species closely related to humans, to study small RNA expression in testis samples throughout postnatal development and maturation. During testis development, we observe a sharp transition in overall miRNA and piRNA expression levels resulting from a rise in piRNA and a corresponding decrease in miRNA abundance. Unexpectedly, this transition takes place at approximately one year of age – far earlier than rhesus macaque sexual maturation at 4-5 years of age. Although the overall trend is for declining expression, we identified a group of 29 miRNA that show a marked increase in expression in macaque testis at approximately five years of age – the time interval associated with macaque sexual maturation. These miRNA are preferentially expressed in testis and tend to target genes involved in transcriptional regulation, DNA binding, cell migration, embryonic morphogenesisand variety of other functions associated with growth and development. In addition, 14 of these 29 miRNA originate from one primate-specific miRNA cluster.
Keywords: Testis; miRNA; rhesus macaque; sexual maturity; male reproduction.
References
Ambros, V. (2004). The functions of animal microRNAs. Nature, 431, 350-355.
Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215-233.
Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E., Sharon, E., Spector, Y., Bentwich, Z. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet., 37, 766-770.
Berezikov, E., Thuemmler, F., vanLaake, L.W., Kondova, I., Bontrop, R., Cuppen, E., Plasterk, R.H. (2006). Diversity of microRNAs in human and chimpanzee brain. Nat Genet., 38, 1375-1377.
Bjork, J.K., Sandqvist, A., Elsing, A.N., Kotaja, N., Sistonen, L. (2010). MiR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development, 137, 3177-3184.
Boerke, A., Dieleman, S.J., Gadella, B.M. (2007). A possible role for sperm RNA in early embryo development.Theriogenology, 68 (Suppl 1), 147-155.
Bouhallier, F., Allioli, N., Lavial, F., Chalmel, F., Perrard, M.H., Durand, P., Samarut, J., Pain, B., Rouault, J.P. (2010).Role of miR-34c microRNA in the late steps of spermatogenesis. RNA, 16, 720-731.
Carthew, R.W., Sontheimer, E.J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136, 642-655.
Franca, L.R., Ogawa, T., Avarbock, M.R., Brinster, R.L., Russell, L.D. (1998). Germ cell genotype controls cell cycle during spermatogenesis in the rat. BiolReprod., 59, 1371-1377.
Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A., Enright, A.J. (2006). MiRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res., 34, 140-144.
Grivna, S.T., Beyret, E., Wang, Z., Lin, H. (2006). A novel class of small RNAs in mouse spermatogenic cells. Genes Dev., 20, 1709-1714.
Harrison, R.G., Weiner, J.S. (1949). Vascular patterns of the mammalian testis and their functional significance. J Exp Biol., 26, 304-316.
Heller, C.G., Clermont, Y. (1963). Spermatogenesis in man: an estimate of its duration. Science, 140, 184-186.
Houwing, S., Kamminga, L.M., Berezikov, E., Cronembold, D., Girard, A., van den Elst, H., Filippov, D.V., Blaser, H., Raz, E., Moens, C.B., Plasterk, R.H., Hannon, G.J., Draper, B.W., Ketting, R.F. (2007). A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell, 129, 69-82.
Hu, H.Y., Guo, S., Xi, J., Yan, Z., Fu, N., Zhang, X., Menzel, C., Liang, H., Yang, H., Zhao, M., Zeng, R., Chen, W., Paabo, S., Khaitovich, P. (2011). MicroRNA expression and regulation in human, chimpanzee, and macaque brains.PLoS Genet., 7: e1002327.
Huang da, W., Sherman, B.T., Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc., 4, 44-57.
Klattenhoff, C., Theurkauf, W. (2008). Biogenesis and germline functions of piRNAs. Development, 135, 3-9.
Kornack, D.R., Rakic, P. (1999). Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl AcadSci USA, 96, 5768-5773.
Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10, R25.
Lewis, B.P., Burge, C.B., Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15-20.
Liang, Y., Ridzon, D., Wong, L., Chen, C. (2007). Characterization of microRNA expression profiles in normal human tissues. BMC Genomics, 8, 166-173.
Lockwood, C.B. (1888). Development and Transition of the Testis, Normal and Abnormal. J Anat Physiol., 22, 505-541.
Miska, E.A. (2005). How microRNAs control cell division, differentiation and death. CurrOpin Genet Dev., 15, 563-568.
Mount, D.W. (2007). Using the Basic Local Alignment Search Tool (BLAST). CSH Protoc , 14, 1-17.
Noguer-Dance, M., Abu-Amero, S., Al-Khtib, M., Lefevre, A., Coullin, P., Moore, G.E., Cavaille, J. (2010). The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum MolGenet., 19, 3566-3582.
Patil, V.S., Kai, T. (2010). Repression of retroelements in Drosophila germline via piRNA pathway by the tudor domain protein tejas. Curr Biol., 20, 724-730.
Seitz, H., Tushir, J.S., Zamore, P.D. (2011). A 5'-uridine amplifies miRNA/miRNA* asymmetry in Drosophila by promoting RNA-induced silencing complex formation. Silence, 2, 4-8.
Senti, K.A., Brennecke, J. (2010). ThepiRNA pathway: a fly's perspective on the guardian of the genome. Trends Genet, 26, 499-509.
Sluka, P., O'Donnell, L., Stanton, P.G. (2002). Stage-specific expression of genes associated with rat spermatogenesis: characterization by laser-capture microdissection and real-time polymerase chain reaction. BiolReprod., 67, 820-828.
Somel, M., Guo, S., Fu, N., Yan, Z., Hu, H.Y., Xu, Y., Yuan, Y., Ning, Z., Hu, Y., Menzel, C., Hu, H., Lachmann, M., Zeng, R., Chen, W., Khaitovich, P. (2010). MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res., 20, 1207-1218.
Voorhoeve, P.M., le Sage, C., Schrier, M., Gillis, A.J., Stoop, H., Nagel, R., Liu, Y.P., van Duijse, J., Drost, J., Griekspoor, A., Zlotorynski, E., Yabuta, N., De Vita, G., Nojima, H., Looijenga, L.H., Agami, R. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 124, 1169-1181.
Yan, Z., Hu, H.Y., Jiang, X., Maierhofer, V., Neb, E., He, L., Hu, Y., Hu, H., Li, N., Chen, W., Khaitovich, P. (2011).Widespread expression of piRNA-like molecules in somatic tissues. Nucleic Acids Res., 39, 6596-6607.
Yomogida, K., Ohtani, H., Harigae, H., Ito, E., Nishimune, Y., Engel, J.D., Yamamoto, M. (1994). Developmental stage- and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells. Development, 120, 1759-1766.
Yu, Z., Guo, R., Ge, Y., Ma, J., Guan, J., Li, S., Sun, X., Xue, S., Han, D. (2003). Gene expression profiles in different stages of mouse spermatogenic cells during spermatogenesis. BiolReprod., 69, 37-47.
Zhang, R., Wang, Y.Q., Su, B. (2008). Molecular evolution of a primate-specific microRNA family.MolBiolEvol., 25, 1493-1502.