(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 12985-13000 | Article Number: ijese.2016.973
Published Online: November 05, 2016
Abstract
Gene expression is the most fundamental level at which the genotype gives rise to the phenotype. Therefore, when and where, why and how a gene would be expressed is of the upmost importance during biology process. One type of expression – the antisense transcription – occurs between a pair of genes that are encoded in an overlapping and opposite orientation (sense and antisense gene pair, SAS pair).
Keywords: Gene; human brain; sequencing (RNA-seq)
References
Alfano, G., Vitiello, C., Caccioppoli, C., Caramico, T., Carola, A., Szego, M. J. (2005). Natural antisense transcripts associated with genes involved in eye development. Hum. Mol. Genet., 14, 913-923.
Argaman, L., Hershberg, R., Vogel, J., Bejerano, G., Wagner, E.G., Margalit, H., Altuvia, S. (2001). Novel small RNA-encoding genes in the intergenic regions of Escherichia coli.Curr Biol., 11 (12), 941-950.
Babak, T., Blencowe, B. J., Hughes, T. R. (2007). Considerations in the identification of functional RNA structural elements in genomic alignments. BMC Bioinformatics, 8, 33-38.
Bánfai, B., Jia, H., Khatun, J., Wood, E., Risk, B., Gundling, W. (2012). Long noncoding RNAs are rarely translated in two human cell lines. Genome Res., 22, 1646-1657.
Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M. C., Maeda, N. (2005). The transcriptional landscape of the mammalian genome. Science, 309, 1559-1563.
Carninci, P., Sandelin, A., Lenhard, B., Katayama, S., Shimokawa, K., Ponjavic, J. (2006). Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet., 38, 626-635.
Carvunis, A. R., Rolland, T., Wapinski, I., Calderwood, M. A., Yildirim, M. A., Simonis, N. (2012). Proto-genes and de novo gene birth. Nature, 487, 370-374.
Clote, P., Ferre, F., Kranakis, E., Krizanc, D. (2005). Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. RNA, 11 (5), 578-591.
Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res., 22, 1775-1789.
di Bernardo, D., Down, T., Hubbard, T. (2003). ddbRNA: detection of conserved secondary structures in multiple alignments. Bioinformatics, 19 (13), 1606-1611.
Geisler, S., Lojek, L., Khalil, A. M., Baker, K. E., Coller, J. (2012).Decapping of long noncoding RNAs regulates inducible genes. Mol. Cell, 45, 279-291.
Georg, J., Hess, W. R. (2011). Cis-antisense RNA, another level of gene regulation in bacteria. Microbiol. Mol. Biol. Rev., 75, 286-300.
Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A., Enright, A.J. (2006). MiRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res., 34, 140-144.
Grinchuk, O. V., Jenjaroenpun, P., Orlov, Y. L., Zhou, J., Kuznetsov, V. A. (2010). Integrative analysis of the human cis-antisense gene pairs, miRNAs and their transcription regulation patterns. Nucleic Acids Res., 38, 534-547.
Havgaard, J.H., Lyngso, R.B., Stormo, G.D., Gorodkin, J. (2005). Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics, 21 (9), 1815-1824.
Jeon, Y., Sarma, K., Lee, J. T. (2012). New and Xisting regulatory mechanisms of X chromosome inactivation. Curr.Opin.Genet. Dev., 22, 62-71.
Kent, W.J. (2002). BLAT – the BLAST-like alignment tool. Genome Res., 12 (4), 656-664.
Pollard, D.A., Bergman, C.M., Stoye, J., Celniker, S.E., Eisen, M.B. (2004).Benchmarking tools for the alignment of functional noncoding DNA. BMC Bioinformatics, 5, 6-9.
Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs, A.S., Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L.W., Richards, S., Weinstock, G.M., Wilson, R.K., Gibbs, R.A., Kent, W.J., Miller, W., Haussler, D. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res., 15 (8), 1034-1050.
Sluka, P., O'Donnell, L., Stanton, P.G. (2002). Stage-specific expression of genes associated with rat spermatogenesis: characterization by laser-capture microdissection and real-time polymerase chain reaction. BiolReprod., 67, 820-828.
Torarinsson, E., Sawera, M., Havgaard, J.H., Fredholm, M., Gorodkin, J. (2006). Thousands of corresponding human and mouse genomic regions unalignable in primary sequence contain common RNA structure. Genome Res., 16 (7), 885-889.
Uzilov, A.V., Keegan, J.M., Mathews, D.H. (2006). Detection of non-coding RNAs on the basis of predicted secondary structure formation free energy change. BMC Bioinformatics, 7 (1), 173-176.
Washietl, S., Hofacker, I.L. (2004). Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics. J Mol Biol., 342 (1), 19-30.
Washietl, S., Hofacker, I.L., Stadler, P.F. (2005).Fast and reliable prediction of noncoding RNAs. Proc Natl AcadSci USA, 102 (7), 2454-2459.
Wassarman, K.M., Repoila, F., Rosenow, C., Storz, G., Gottesman, S. (2001).Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev., 15 (13), 1637-1651.