(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 12121-12130 | Article Number: ijese.2016.884
Published Online: December 06, 2016
Abstract
To obtain a biodegradable material based on fiberglass-filled (FG) polyamide-6 (PA-6) was used purified (NR-P), non-purified (NR-N), natural rubber (NR) of Vietnam and Malaysia production. When determining NR composites fungal resistance using Aspergillus niger, Penicillium expansum and Fusarium oxysporum filamentous fungi it was found out that major degradation of materials have undergone in the presence of Fusarium oxysporum fungi. For all samples were mentioned significant changes in technological and the physical and mechanical properties after accelerated environmental tests, more pronounced for samples with NR-N. It was found that the introduction NR, regardless of its purification, significantly reduces the water absorption of compositions based on fiberglass-filled PA-6.
Keywords: Biodegradation, fungal resistance, natural rubber, polyamide, polymeric compositions
References
Berekaa, M.M. (2006). Colonization and microbial degradation of polyisoprene rubber by Nocardio form actinomycete Nocardia sp. strain MBR. Biotechnology, 3(5), 234-239.
Berekaa, M.M., Lions, A., Reichelt, R., Keller, U. & Steinbuchel, A. (2000). Effect of pretreatment of rubber material on its biodegradability by various rubber degrading bacteria. FEMS Microbiol Lett, 184, 199-206.
Borel, М., Kergomard, A. & Renard, M.F. (1982). Degradation of natural rubber by Fungi Imperfecti. Agricultural and Biological Chemistry, 46, 877-878.
Chen, C.H., Cheng, J.C., Cho, Y.C. & Hsu, W.H. (2005). A gene cluster for the fatty acid catabolism from Pseudonocardia autotrophica BCRC12444, In Biochemical and Biophysical Research Communications, 329, 863-868.
Chengalroyen, M.D. & Dabbs, E. (2012). Characterization of rubber degrading isolates. The Journal of Microbiology, Biotechnology and Food Sciences, 2(3), 872-885.
Cherian, E. & Jayachandran, K. (2009). Microbial Degradation of Natural Rubber Latex by a Novel Species of Bacillus sp. SBS25 Isolated from Soil. International Journal of Environmental Research, 4(3), 599-604.
Dautova A.N., Yanov V.V., Zenitova L.A. & Nikolaeva O.A. (2015b). Creation of high strength composite materials biodegradable in depositing conditions. Butlerov Massages magazine, 1(41), 138-141.
Dautova, A.N., Yanov, V.V., Kulikov, S.N. & Zenitova, L.A. (2015a). Research of a natural rubber as а biodegradable component of compositions. International Workshop on Nanoscience and Nanotechnology Opportunities for Academia & High Tech Industry Joint 4th Asia-Pacific Chemical and Biological Microfluidics Conferences. Graduate University of Science and Technology, 201-205.
Esuruoso, O.F. (1970). Fungi that cause moldiness of processed sheet rubber in Western Nigeria. Mycopathologia et mycologia applicata, 1(42), 187-189.
Ghosh, S.K., Pal, S. & Ray, S. (2013). Study of microbes having potentiality for biodegradation of plastics. Environmental Science and Pollution Research, 7(20), 4339-4355.
Harada, N., Takagi, K., Harazono, A., Fujii, K. & Iwasaki, A. (2006). Isolation and characterization of microorganisms capable of hydrolysing the herbicide mefenacet. In Soil Biol Biochem, 38, 173-179.
Kalinenko, V.O. (1938). The role of actinomyces and bacteria in decomposing rubber. Mikrobiologiia, 17, 119-128.
Karsakova E.V. & Kravchenko, T.P. (2008). Properties and scope of application of various types of polyamides. Advances in Chemistry and Chemical Technology, 5(85), 10-13.
Kwiatkowska, D. (1980). Microbiological deterioration of natural rubber sheet by soil microorganisms. Biodeterioration, 4, 135-141.
Linos, A., Berekaa, M.M., Reichelt, R., Keller, U., Schmitt, J., Flemming, H.C., Kroppenstedt, R.M. & Steinbüchel, A. (2000). Biodegradation of cis-1,4- polyisoprene rubbers by distinct actinomycetes: microbial strategies and detailed surface analysis. In Applied Environmental Microbiology, 66, 1639-1645.
Miller, C.D., Hall, K., Liang, Y.N., Nieman, K., Sorensen, D., Issa, B., Anderson, A.J. & Sims, R.C. (2004). Isolation and characterization of polycyclic aromatic hydrocarbon- degrading Mycobacterium isolates. In Microbial Ecology, 48, 230-238.
Mooibroek, H. & Cornish, K. (2000). Alternative sources of natural rubber, In Applied Microbiology Biotechnology, 53, 355-365.
Nayanashree, G.B. & Thippeswamy, В. (2015). Natural rubber degradation by laccase and manganese peroxidase enzymes of Penicillium chrysogenum. International Journal of Environmental Science and Technology, 8(12), 2665-2672.
Othmer, K. (1997). Encyclopaedia of chemical technology – Recycling oil to silicon (4th edition). New York: John Wiley and Sons Inc.
Roy, R.V., Das, M., Banerjee, R. & Bhowmick, A.K. (2006). Comparative studies on crosslinked and uncrosslinked natural rubber biodegradation by Pseudomonas sp. Bioresource Technology, 97(18), 2485-2488.
Sivan, A., Szanto, M. & Pavlov, V. (2006). Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol, 72(2), 346-52.
Syed, D.G., Agasar, D., Kim, C., Li, W., Lee, J., Park, D., Xu, L., Tian, X. & Jiang, C. (2007). Streptomyces tritolerans sp. nov., a novel actinomycete isolated from soil in Karnataka. In Antonie Leeuwenhoek, 92, 391-397.
Tsuchii, A. & Takeda, K. (1990). Rubber-degrading enzyme from a bacterial culture. In Applied Environmental Microbiology, 56, 269-274.
Tsuchii, A. & Tokiwa, Y. (2001). Microbial degradation of tire rubber particles. Biotechnol Lett, 23, 963-969.
Williams, G.R. (1982). The breakdown of rubber polymers by microorganisms. International Biodeterioration Bulletin, 18, 31-36.