(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 111-132 | DOI: 10.12973/ijese.2015.234a | Article Number: ijese.2015.045
Published Online: January 10, 2015
Abstract
This study was conducted in order to determine the differences in integrated scientific process skills (designing experiments, forming data tables, drawing graphs, graph interpretation, determining the variables and hypothesizing, changing and controlling variables) of students (n = 17) who were taught with an approach based on scientific argumentation and of students (n = 17) who were taught with a traditional teaching approach in Grade 11 chemistry. The study was conducted at a high school in Çankırı, Turkey. A multiformat Scientific Process Skills Scale was administered to both groups as a pre- and posttest; it contained 29 items in 5 modules and consisted of limited and unlimited open-ended, multiple-choice, and paper-pencil performance assessment questions. Repeated t-test and analysis of variance (MANCOVA) were applied to analyze the data. It was found that the integrated scientific process skills of students in both groups improved significantly except skills of “forming a data table” and “graphic interpretation skills” for group. MANCOVA results revealed that there was a statistically significant difference between the groups on the combination of 5 dependent variables. The teaching approach had a significant effect on integrated scientific process skills except for the designing experiments skills. In sum, the scientific argumentation-based teaching approach was more effective in acquiring science process skills than the traditional teaching approach.
Keywords: Scientific argumentation, scientific process skills, chemistry education, secondary education.
References
Atasoy, B., Akkuş, H., & Kadayıfçı, H. (2009). The effect of a conceptual change approach on understanding of students; chemical equilibrium concepts. Research in Science and Technological Education, 27(3)(267-282).
American Educational Research Association, American Psychological Association, & National Council on Measurement in Education. (1985). Standards for educational and psychological testing. Washington, DC: Authors.
Arcidiacona, F., & Kohler, A. (2010). Elements of design for studying argumentation: The case of two on-going research lines. Cultural-Historical Psychology, 1, 65-77.
Aydeniz, M., Pabucu, A., Çetin, P. S., & Kaya, E. (2012). Argumentation and students’ conceptual understanding of properties and behaviors of gases. International Journal of Science and Mathematics Education, 10, 1303-1324.
Bozdoğan, A., Taşdemir, A., & Demirbaş, M. (2006). Fen bilgisi öğretiminde işbirlikli öğrenme yönteminin öğrencilerin bilimsel süreç becerilerini geliştirmeye yönelik etkisi [The impact of cooparative learning to improve students’ scientific process skills in the teaching of science]. Eğitim Fakültesi Dergisi, 7(11), 23–26.
Bricker, L. A., & Bell, P. (2008). Conceptualizations of argumentation from science studies and the learning sciences and their implications for the practices of science education. Science Education, 92(3), 473-498.
Carr, M. (1999). Being a learner: Five learning dispositions for early childhood. Early Childhood Practice, 1(1), 81–99.
Chang, C., & Weng, Y. (2000). Exploring interrelationship between problem-solving ability and science process skills of tenth-grade earth science students in Taiwan. Chinese Journal of Science Education, 8(1), 35–56.
Colvill, M., & Pattie, I. (2003). Science skills-the building blocks for scientific literacy. Investigating, 19(1), 21-23.
Coştu, B., & Ünal, S. (2004). The use of worksheets in teaching Le Chatelier’s principle. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 1(1).
Cross, D., Taasoobshirazi, G., Hendrick, S., & Hickey, D. (2008). Argumentation: A strategy for improving achievement and revealing scientific identities. International Journal of Science Education, 30(6), 837-861.
Celik, A. Y. & Kılıç, Z. (2014). The impact of argumentation on high school chemistry students' conceptual understanding, attitude towards chemistry and argumentativeness. Eurasian Journal of Physics and Chemistry Education, 6(1).
Çakmakçı, G., & Leach, J. (2005, August-September). Turkish secondary and undergraduate students’ understanding of the effect of temperature on reaction rates. Paper presented at the European Science Education Research Association (ESERA) Conference, Barcelona, Spain.
Demircioğlu, G., & Yadigaroğlu, M. (2011). The effect of laboratory method on high school students’ understanding of the reaction rate. Western Anatolia Jornal of Educational Science. Dokuz Eylül Universty Instute, İzmir, Turkey ISSN 1308-8971.
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classroom. Science Education, 84(3), 287-312.
Ebenezer, J. V., & Haggerty, S. M. (1999). Becoming a secondary school science teacher. Columbus, OH: Merrill.
Erduran, S., Ardaç, D., & Yakmacı-Güzel, B. (2006). Learning to teach argumentation: Case study of pre-service secondary science teachers. Eurasia Journal of Mathematics, Science and Technology Education, 2(2), 1-14.
Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin’s Argument Pattern for studying science discourse. Science Education, 88, 915–933.
Ergül, R., Şimşekli, Y., Çalış, S., Özdilek, Z., Göçmençelebi, Ş., & Şanlı, M. (2011). The effects of inquıry-based science teaching on elementary school students’ science process skills and science attitudes. Bulgarian Journal of Science and Education Policy (BJSEP), 5(1), 71-81.
Flores, G. S. (2000). Teaching and assessing science process skills in physics: The “Bubbles” task. Science Activities, 37(1), 31–37.
Fusco, D., & Calabrese Barton, A. (2001). Re-presenting student achievement. Journal of Research in Science Teaching, 38, 337–354.
Gültepe, N. (2010). Bilimsel tartışma odaklı öğretimin lise öğrencilerinin bilimsel süreç ve eleştirel düşünme becerilerinin geliştirilmesine etkisi [The impact of argumentation based instruction on improvement of high school students’ scientific process skill and critical thinking ability] (Unpublished doctoral dissertation). Gazi University, Ankara, Turkey.
Gültepe, N., & Kılıç, Z. (2013) Argumentation and Conceptual Understanding of High School Student on Solubility Equilibrium and Acids and Bases. Journal of Turkish Science Education, 10(4).
Harlen, W. (1999). Purposes and procedures for assessing science process skills. Assessment in Education, 6(1), 129–144.
Karamustafaoğlu, S. (2011). Improving the science process skills ability of science student teachers using I diagrams. Eurasian J. Phys. Chem. Educ, 3(1), 26–38.
Kaya, E. (2013). Argumentation practices in classroom: Pre-service teachers’ conceptual understanding of chemical equilibrium. Journal of Science Education, 35(7), 1139-1158.
Kaya, E., Erduran, S., & Çetin, P. S. (2012). Discourse, argumentation, and science lessons: Match or mismatch between students’ perceptions and understanding? Mevlana International Journal of Education, 2(3), 1-32.
Keys, C. W. (1994). The development of scientific reasoning skills in conjunction with collaborative writing assignments: An interpretive study of six ninth-grade students. Journal of Research in Science Teaching, 31, 1003–1022.
Kılıç, B. G., Yıldırım, E., & Metin, D. (2010). Ön ve son laboratuar tartışması eklenmiş yönlendirilmiş araştırmaların bilimsel süreç becerilerinin geliştirilmesine etkisi [Effect of guided-inquiry with pre- and post- laboratory discussion on development of science process skills]. 9. Ulusal Sınıf Öğretmenliği Eğitimi Sempozyumu. Elazığ. 310–313.
Kocakülah, A., & Savaş, E. (2013). Effect of the Science Process Skills Laboratory Approach Supported with Peer-Instruction on Some of Science Process Skills of Pre-service Teachers. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 7(2), 46-77
Koray, Ö., Köksal, Mustafa S., Özdemir, M. & Presley, Arzu İ. (2007). The effect of creative and critical thinking based laboratory applications on academic achievement and science process skills. Elementary Education Online, 6(3), 377–389.
Laugksch, R. C., & Spargo, P. E. (1996). Development of a pool of scientific literacy test-items based on selected AAAS literacy goals. Science Education, 80(2), 121–143.
Lazarou, D. (2009, August-September). Learning to TAP: An effort to scaffold students’ argumentation in science. Paper presented at the biennial conference of the European Science Education Research Association, İstanbul, Turkey.
Lee, O., & Fradd, S. H. (1996). Literacy skills in science performance among culturally and linguistically diverse students. Science Education, 80(6), 651–671.
Lemke, J. L. (1990). Talking science: Language, learning and values. Norwood, NJ: Ablex.
MEB (2008). Ortaöğretim 10. Sınıf Kimya Dersi Öğretim Programı [Secondary education 10 grade chemistry curriculum]. Talim ve Terbiye Kurulu Başkanlığı. Retrieved from http://ttkb.meb.gov.tr/program2.aspx
Nussbaum, E. M., & Sinatra, G. M. (2003). Argument and conceptual engagement. Contemporary Educational Psychological, 28, 384–395.
Osborne, J. (2002). Science without literacy: A ship without a sail? Cambridge Journal of Education, 32(2), 203–215.
Osborne, J., Erduran S., & Simon, S. (2004a). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching. 41(10), 994–1020.
Osborne, J., Erduran S., & Simon, S. (2004b). Ideas, evidence and argument in science.(Inservice Training Pack). London, UK: Nuffield Foundation.
Ostlund, K. (1998). What research says about science process skills: How can teaching science process skills improve student performance in reading, language arts, and mathematics? Electronic Journal of Science Education, 2(4).
Önal, İ. (2005). İlköğretim fen bilgisi öğretiminde performans dayanaklı durum belirleme uygulaması üzerine bir çalışma [A study on the application of performance based due diligence in the teaching of elementary school science] (Unpublished master’s thesis). Hacettepe University, Ankara, Turkey.
Önal, İ. (2008). Effects of constructivist instruction on the achievement, attitude, science process skills and retention in science teaching methods II course (Unpublished doctoral dissertation). Middle East Technical University, Ankara, Turkey.
Özdemir, S. M. (2005). Üniversite öğrencilerinin eleştirel düşünme becerilerinin çeşitli etkenler açısından değerlendirilmesi [The evaluation of college students’ critical thinking in terms of various factors]. Türk Eğitim Bilimleri Dergisi, 3(3), 297–316.
Özmen, H., Demircioğlu, G., Burhan, Y., Naseriazar, A., & Demircioğlu, H. (2012). Asia–Pacific Forum on Science Learning and Teaching, 13(1).
Padilla, M. J. (1990). The science process skills. Research Matters to the Science Teacher, March 1 (No. 9004). Retrieved from http://www.narst.org/publications/research/skill.cfm
Pekmez, E. Ş. (2010). Using analogies to prevent misconceptions about chemical equilibrium. Asia –Pacific Forum on Science Learning and Teaching, 11 (2).
Rezba, R. J., Sprague, C., Fiel, R. L., Funk, H. J., Okey, J. R., & Jaus, H. H. (1995). Learning and assessing science process skills. Dubuque, IA: Kendall/Hunt.
Rothon, C., Stansfeld, S., Mathews, C., Kleinhans, A., Clark, C., Lund, C., & Flisher, A. (2011). Reliability of self report questionnaires for epidemiological investigations of adolescent mental health in Cape Town, South Africa. Journal of Child and Adolescent Mental Health, 23(2), 119–128.
Rothstein, J., & Echternach, J. (1993). Primer on measurement: An ıntroductory guide to measurement ıssues. Alexandria, VA: American Physical Therapy Association.
Sampson, V., & Clark, D. B. (2011). A control of the collaborative scientific argumentation practices of two high and two low performing groups. Research in Science Education, 41(1), 63-97.
Sampson, V., & Gleim, L. (2009). Argument-driven inquiry to promote the understanding of important concepts and practices in biology. The American Biology Teacher, 71(8), 465–472.
Schafersman, S. D. (1991). An introduction to critical thinking. Retrieved from http://smartcollegeplanning.org/wp-content/uploads/2010/03/Critical-Thinking.pdf.
Scherz, Z., Bialer, L., & Eylon, B. S. (2008). Learning about teachers’ accomplishment in ‘learning skills for science’ practice: The use of portfolios in an evidence-based continuous professional development programme. International Journal of Science Education, 30(5), 643–667.
Seferoğlu, S. S., & Akbıyık, C. (2006). Eleştirel düşünme ve öğretimi [Critical thinking and learning]. H.Ü. Eğitim Fakültesi Dergisi, 30, 193–200.
Serin, G. (2009). The effect of problem based learning instruction on 7th grade students’ science achievement, attitude toward science and scientific process skills (Unpublished doctoral dissertation). Middle East Technical University, Ankara, Turkey.
Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2–3), 235–260.
Skoumois, M. (2009). The effect of sociocognitive conflict on students’ dialogic argumentation about floating and sinking. International Journal of Environmental & Science Education, 4(4), 381-399.
Tan, M., & Temiz, B. K. (2003). Fen öğretiminde bilimsel süreç becerilerinin yeri ve önemi [The location and the importance of scientific process skills in teaching science]. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 1, 89–101.
Temiz, B. K. (2007). Fizik öğretiminde öğrencilerin bilimsel süreç becerilerinin ölçülmesi [The assessment of students’ scientific process skills in teaching physics] (Unpublished doctoral dissertation). Gazi University, Ankara, Turkey.
Toulmin, S. E. (1958). The uses of argument. Cambridge, England: Cambridge University Press.
Turpin, T., & Cage, B. N. (2004). The effects of an integrated activity-based science curriculum on student achievement, science process skills and science attitudes. Electronic Journal of Literacy Through Science, 3, 1–15.
Van Driel, J. H., Beijaard, D., & Verloop, N. (2001). Professional development and reform in science education: The role of teachers’ practical knowledge. Research in Science Teaching, 38(2), 137–158.
von Aufschnaiter, C., Erduran, S., & Osborne, J. (2004, April). Argumentation and cognitive processes in science education. Paper presented at the annual conference of the National Association for Research in Science Teaching, Vancouver, Canada, April. Available from http://www.narst.org/annualconference/2009_final_program.pdf.
von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students’ argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101-131.
Yerrick, R. K. (2000). Lower track science students’ argumentation and open inquiry instruction. Journal of Research in Science Teaching, 37(8), 807–38.
Zachos, P., Hick, T. L., Doane W.illiam E. J., & Sargent, C. (2000). Setting theoretical and empirical foundations for assessing scientific inquiry and discovery in educational programs. Journal of Research in Science Teaching, 37(9), 938–962.