(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 99-110 | DOI: 10.12973/ijese.2015.233a | Article Number: ijese.2015.044
Published Online: January 10, 2015
Abstract
Taking into account (German) students’ deficiencies in scientific literacy as well as reading competence and the ‘mother tongue + 2’ objective of the European commission, a bilingual course on molecular biology was developed. It combines CLIL fundamentals and practical experimentation in an out-of-school lab. Cognitive and affective evaluation of 490 students from upper secondary schools followed a quasi-experimental design, including two experimental (bilingual course and monolingual course) and one control group that did not take part in any of the courses. Cognitive achievement concerning molecular biology and self-concept were measured in a pre, post, follow-up test design. The study has shown that cognitive achievement concerning biological content knowledge of students having participated in a bilingual course (English and German) does not differ significantly from cognitive achievement of those that have participated in a monolingual course (German). Regarding biological self-concept, no significant differences between students having assessed themselves as being rather interested and talented in foreign languages and students having assessed themselves as being rather interested and talented in science could be observed. This indicates that bilingual courses in an out-of-school lab are equally beneficial for both of these groups.
Keywords: CLIL, experiments, out-of-school lab, biological self-concept, cognitive load, levels of processing, cognitive achievement.
References
Abd-El-Khalick, F., BouJaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., … (2004). Inquiry in science education: International perspectives. International Journal of Science Education, 88(3), 397-419. doi:10.1002/sce.10118
Albert, S. (1977). Temporal comparison theory. Psychological Review, 84(6), 485–503. doi:10.1037/0033-295X.84.6.485
Bonnet, A. (2004). Chemie im bilingualen Unterricht: Kompetenzerwerb durch Interaktion. [Chemistry in bilingual education]. Opladen: Leske + Budrich.
Brandt, A. (2005). Förderung von Motivation und Interesse durch ausserschulische Experimentierlabors [Promotion of motivation and interest through out-of-school labs].. Göttingen: Cuvillier.
Bredenbröker, W. (2000). Förderung der fremdsprachlichen Kompetenz durch bilingualen Unterricht [Promotion of foreign language competence through bilingual education]. Frankfurt a.M., Bern [etc.]: P. Lang.
Brünken, R., Plass, J. L., & Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational Psychologist, 38(1), 53–61.
Bryce, T., & Robertson, I. (1985). What can they do? A review of practical assessment in science. Studies in Science Education, 12, 1-24.
Budowle, B., Chakraborty, R., Giusti, A. M., Eisenberg, A. J., & Allen, R. C. (1991). Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. American Journal of Human Genetics, 48(1), 137-144.
Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293-332.
Craik, F. I. M., & Lockhart, R. S. (1972). Levels of Processing: A Framework for Memory Research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671-684.
Damerau, K. (2013). Molekulare und Zell-Biologie im Schülerlabor - Fachliche Optimierung und Evaluation der Wirksamkeit im BeLL Bio (Bergisches Lehr-Lern-Labor Biologie). [Molecular and cell biology in an out-of-school lab]. Wuppertal: Universitätsbibliothek Wuppertal. Retrieved from http://elpub.bib.uni-wuppertal.de/servlets/DerivateServlet/Derivate-3530/dc1231.pdf
Dickhäuser, O. (2006). Fähigkeitsselbstkonzepte: Entstehung, Auswirkung, Förderung.[Self-concepts: formation, impact, promotion]. Zeitschrift für pädagogische Psychologie, 20(1-2), 5-8.
Euler, M. (2004). The role of experiments in the teaching and learning of physics. In E. F. Redish & M. Vicentini (Eds.), Research on physics education (pp. 175–221). Amsterdam: IOS Press.
Euler, M. (2009). Schülerlabore in Deutschland: Zum Mehrwert authentischer Lernorte in Forschung und Entwicklung [Out-of-school labs in Germany: The added value of authentic learning environments in research and development]. Praxis der Naturwissenschaften - Physik in der Schule, 58(4), 5–9.
European Commission (Ed.). (2004). Promoting language learning and linguistic diversity: An action plan 2004-06. Luxembourg: Office for Official Publications of the European Communities. Retrieved from http://ec.europa.eu/education/doc/official/keydoc/actlang/act_lang_en.pdf
European Commission. (2012). FAQs on multilingualism and language learning. Brussels. Retrieved from http://europa.eu/rapid/press-release_MEMO-12-703_en.pdf
Glowinski, I. (2007). Schülerlabore im Themenbereich Molekularbiologie als Interesse fördernde Lernumgebungen [Student labs in the subject area of molecular biology as learning environments promoting interest]. Dissertation: Kiel.
Glowinski, I., & Bayrhuber, H. (2011). Student Labs on a University Campus as a Type of Out-of-School Learning Environment: Assessing the Potential to Promote Students’ Interest in Science. International Journal of Environmental and Science Education, 6(4), 371–392.
Großschedl, J., & Harms, U. (2008): Similarity judgments test: Ein Verfahren Zur Erfassung von Wissens strukturen. Erkenntnisweg Biologiedidaktik, 7, 85–100.
Haupt, O. J., Domjahn, J.: Martin, U., Skiebe-Corrette, P., Vorst, S., Zehren, W., & Hempelmann, R. (2013). Schülerlabor - Begriffsschärfung und Kategorisierung [Out-of-school lab: sharpening of the term and categorisation]. MNU, 66(6), 324–330.
Häußler, P., Bünder, W., Duit, R., Gräber, W., & Mayer, J. (Eds.) (1998). Naturwissenschaftsdidaktische Forschung – Perspektiven für die Unterrichtspraxis [Research in Science Education – Perspectives for Teaching Practice]. Kiel: IPN.
Heine, L. (2010). Problem solving in a foreign language: [a study in content and language integrated learning]. Studies on language acquisition: Vol. 41. Berlin: De Gruyter Mouton.
Hodson, D. (1998). Teaching and learning science. Towards a personalized approach (1. publ). Buckingham, Philadelphia: Open Univ. Press.
Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science education, 88(1), 28‐54. doi:10.1002/sce.10106
Kasai, K., Nakamura, Y., & White, R. (1990). Amplification of a Variable Number of Tandem Repeats (VNTR) Locus (pMCT118) by the Polymerase Chain Reaction (PCR) and Its Application to Forensic Science. Journal of Forensic Sciences, 35(5), 1196–1200.
Klieme, E., Artelt, C., Hartig, J., Jude, N., Köller, O., Prenzel, M., … (Eds.). (2010). PISA 2009: Bilanz nach einem Jahrzehnt. Münster: Waxmann.
Koch, A., & Bünder, W. (2006). Fachbezogener Wissenserwerb im bilingualen naturwissenschaftlichen Anfangsunterricht [Subject-related knowledge acquisition in bilingual science beginners' classes]. Zeitschrift für Didaktik der Naturwissenschaften, 12, 67–76.
Leibold, K. (1997). Modelle, Modellbildung und Modelleinsatz [Models, modelling and the use of models]. Dissertation. Bayreuth.
Linn, M. C. (1990). Summary: Establishing a science and engineering of science education. In M. Gardner (Ed.), Toward a scientific practice of science education (pp. 323–341). Hillsdale, NJ: Erlbaum.
Lunetta, V. N. (1998). The school science laboratory. Historical perspectives and contexts for contemporary teaching. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education. Part One (pp. 249–262). Dordrecht, Boston: Kluwer Academic.
Markowitz, D. G. (2004). Evaluation of the Long-Term Impact of a University High School Summer Science Program on Students’ Interest and Perceived Abilities in Science. Journal of science education and technology, 13(3), 395–408.
Marsh, H. W. (1986). Verbal and Math Self-Concepts: An Internal/External Frame of Reference Model. American Educational Research Journal, 23(1), 129–149. doi:10.3102/00028312023001129
Müller-Hartmann, A., & Schocker-von Ditfurth, M. (2004). Introduction to English language teaching (1st ed.). Stuttgart [u.a.]: Klett.
Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive load theory: Instructional implications of the interaction between information structures and cognitive architecture. Instructional Science, 32(1/2), 1-8.
Resnick, L. B., & Hall, M. W. (1998). Learning organizations for sustainable education reform. DAEDALUS, 127(4), 89–118.
Rost, J. (2004). Lehrbuch Testtheorie - Testkonstruktion [Textbook on test theory and test construction]. Bern u.a: Huber
Scharfenberg, F.-J. (2005). Experimenteller Biologieunterricht zu Aspekten der Gentechnik im Lernort Labor: empirische Untersuchung zu Akzeptanz, Wissenserwerb und Interesse [Experimental biology lessons regarding aspects of gene technology in the learning laboratory]. Dissertation. Bayreuth.
Scharfenberg, F.-J., Bogner, F. X., & Klautke, S. (2006). The Suitability of External Control-Groups for Empirical Control Purposes: a Cautionary Story in Science Education Research. Electronic Journal of Science Education, 11(1), 22–36.
Scheersoi, A. (2008). Lernmotivation im bilingualen Biologieunterricht [Learning motivation in bilingual biology classes]. In A. Scheersoi & H. P. Klein (Eds.), Frankfurter Beiträge zur biologischen Bildung: Vol. 6. Bilingualer Biologieunterricht. [Didaktik der Biowissenschaften] (pp. 69-88). Aachen: Shaker.
Seikkula-Leino, J. (2007). CLIL learning: Achievement levels and affective factors. Language and Education, 21(4), 328–341.
Shavelson, R. J., Hubner, J. J., & Stanton, G. C. (1976). Self-Concept: Validation of Construct Interpretations. Review of Educational Research, 46(3), 407.
Sunal, D. W., Sunal, C. S., Sundberg, C., & Wright, E. (2008). The Importance of Laboratory Work and Technology in Science Teaching. In D. W. Sunal, E. Wright, & C. Sundberg (Eds.), The impact of the laboratory and technology on learning and teaching science K-16 (pp. 1–28). Charlotte, N.C: IAP/Information Age Pub.
Thürmann, E. (2005). Eine eigenständige Methodik für den bilingualen Sachfachunterricht? [An independent methodology for bilingual education?] In G. Bach & S. Niemeier (Eds.), Bilingualer Unterricht. Grundlagen, Methoden, Praxis, Perspektiven (pp. 71–89). Lang, Peter Frankfurt.