(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 51-66 | DOI: 10.12973/ijese.2015.230a | Article Number: ijese.2015.041
Published Online: January 10, 2015
Abstract
Recently, schools nationwide have expressed a renewed interest in school gardens, viewing them as innovative educational tools. Most of the scant studies on these settings investigate the health/nutritional impacts, science learning potential, or emotional dispositions of students. However, few studies examine the shifts in attitudes that occur for students as a result of experiences in school gardens. The purpose of this mixed method study was to examine a school garden program at a K-3 elementary school. Our study sought to demonstrate the value of garden-based learning through a focus on measures of learning typically associated with the informal learning environment. These measures tend to take into account shifts in attitude which can be important factors in learning. In contrast, existing studies on school gardens that do examine learning emphasize individual learning of traditional school content (math, science, etc.). Though we did not set out to alter students’ attitudes toward the environment, based upon some preliminary work, we decided to administer an existing environmental attitude survey from Ratcliffe (2007). Interestingly, results from pre/post environmental attitude surveys indicate little to no change, but results from pre/post tests, interviews, and recorded student conversations reveal important, positive shifts in students’ attitudes toward the environment. We argue that these mixed results point to the important role school gardens play in impacting attitudes toward the environment but that better tools are necessary to accurately measure these shifts.
Keywords: Environmental attitudes, informal learning, outdoor learning, garden-based learning, early childhood science methods.
References
Alexander, J., North, M.W., & Hendren, D.K. (1995). Master gardener classroom garden project: An evaluation of the benefits to children. Child Environments, 12(2), 124-133.
Ash, D. (2003). Dialogic inquiry in life science conversations of family groups in a museum. Journal of Research in Science Teaching, 40(2), 138-162.
Ash, D., Crain, R., Brandt, C., Loomis, M., Wheaton, M., & Bennett, C. (2007). Talk,tools, and tensions: Observing biological talk over time. International Journal of Science Education, 29(12), 1581-1602.
Bamberger, Y., & Tal, T. (2007). Learning in a personal context: Levels of choice in a free choice learning environment in science and natural history museums. Science Education, 91(1), 75-95.
Bell, P., Lewenstein, B., Shouse, A.W., & Feder, M.A. (Eds.). (2009). Learning science in informal environments: People, places, and pursuits. Washington, D.C.: National Academies Press.
Blair, D. (2009). The child in the garden: An evaluative review of the benefits of school gardening. Journal of Environmental Education, 40(2), 15-38.
Borun, M., Chambers, M., & Cleghorn, A. (1996). Families are learning in science museums. Curator: The Museum Journal, 39(2), 123-138.
Brunotts, C.M. (1998). School gardening: A multi-faceted learning tool. An evaluation of the Pittsburgh civic garden center’s Neighbors and Schools Gardening Together. Unpublished master’s thesis, Duquesne University, Pittsburgh, PA.
Brynjegard, S. (2001). School gardens: Raising environmental awareness in children. San
Rafael, CA: School of Education, Dominican University of California. (ERIC Documentation Reproduction Service No. ED452085). Retrieved October 25, 2010, from http://edres.org/eric/ED452085.htm.
Bunting, T.E., & Cousins, L.R. (1983). Development and application of the Children’s Environmental Response Inventory. Journal of Environmental Education, 15(1), 3-10.
California School Garden Network. (2006). Gardens for learning: Creating and sustaining your school garden. Irvine, CA: California School Garden Network.
Canaris, I. (1995). Growing foods for growing minds: Integrating gardening into the total curriculum. Children’s Environments, 12(2), 134-142.
Carrier, S. (2009). Environmental education in the schoolyard: Learning styles and gender. The Journal of Environmental Education, 40(3), 2-12.
Carter, R.L. & Simmons, B. (2010). History and philosophy of environmental education. In A.M. Bodzin, B.S. Klein and S. Weaver (Eds.) The inclusion of environmental education in science teacher education (pp. 3-16). Springer: New York, NY.
Creswell, J.W. (2007). Qualitative inquiry & research design: Choosing among five approaches. London, England: Sage Publications.
Desmond, D., Grieshop, J., & Subramaniam, A. (2002). Revisiting garden based learning in basic education: Philosophical roots, historical foundations, best practices and products, impacts, outcomes, and future directions. Prepared for IIEP/FAO, SDRE Food and Agricultural Organization/United Nations, Rome, Italy, UNESCO International Institute for Educational Planning, Paris, France.
Dierking, L.D., Falk, J.H., Rennie, L., Anderson, D., & Ellenbogen, K. (2003). Policy statement of the “Informal Science Education” Ad Hoc Committee. Journal of Research in Science Teaching, 40, 108-111.
Dillon, J., Rickinson, M., Teamey, K., Morris, M., Choi, M.Y., Sanders, D., Benefield, P. (2006). The value of outdoor learning: Evidence from research in the U.K. and elsewhere. School Science Review, 87(320), 107-111.
Dirks, A.E., & Orvis, K. (2005). An evaluation of the junior master gardener program in third grade classrooms. HortTechnology, 15, 443-447.
Dunlap, R. E., & Jones, R. E.. (2003). Environmental attitudes and values. In R. Fernandez-Ballesteros (Ed.), Encyclopedia of psychological assessment, Vol. 1 (pp. 364-369). London: Sage.
Dunlap, R. E., & Van Liere, K. D. (1978). A proposed measuring instrument and preliminary results: The ‘New Environmental Paradigm’. Journal of Environmental Education, 9(1), 10-19.
Dunlap, R. E., Van Liere, K. D., Mertig, A. G., Jones, R. E. (2002). New trends in measuring environmental attitudes: Measuring endorsement of the New Ecological Paradigm: A revised NEP scale. Journal of Social Issues, 56(3), 425-442.
Eberbach, C., & Crowley, K. (2005). From living to virtual: Learning from museum objects. Curator: The Museum Journal, 48(3), 317-338.
Faddegon, P.A. (2005). The kids growing food school gardening program: Agricultural literacy and other educational outcomes. Doctoral dissertation, Cornell University, Ithaca, NJ.
Falk, J.H. (1999). Museums as institutions for personal learning. Daedalus, 128, 259-275.
Falk, J.H. (2001). Free-choice science learning: Framing the issues. In: Falk, J., (Ed.), Free-choice science education: How people learn science outside of school (pp. 2-9). New York: Teacher’s College Press.
Falk, J.H. & Dierking, L.D. (2002). Lessons without a limit: How free-choice learning is transforming education. Walnut Creek, CA: AltaMira.
Fancovicova, J., & Prokop, J. (2011). Plants have a chance: Outdoor educational programmes alter students’ knowledge and attitudes towards plants. Environmental Education Research, 17(4), 537-551.
Farmer, J., Knapp, D., & Benton, G. M. (2007). An elementary school environmental education field trip: long-term effects on ecological and environmental knowledge and attitude development. The Journal of Environmental Education, 38(3), 33-42.
Firestone, W.A. (1987). Meaning in method: The rhetoric of qualitative and quantitative methods in classroom environment research. Educational Researcher, 16, 16-21.
Fisher-Maltese, C. (2014). The school garden: Fertile ground for learning. In L. Kuh (Ed).Thinking Critically about Environments for Young Children: Bridging Theory and Practice (Chapter 6). New York: Teachers College Press.
Fisher-Maltese, C. & Zimmerman, T.D. (April, 2014). Teaching science in an informal setting: Assessing a garden-based approach to teaching the life cycle of insects. Paper presented at the 2014 Annual American Educational Research Association Meeting, Philadelphia, PA.
Fraser, B. J., & Tobin, K. (1992). Combining qualitative and quantitative methods in classroom environment research. In B. J. Fraser & H. J. Walberg (Eds.), Educational environments: Antecedents, consequences, and evaluation (pp. 271-292). London: Pergamon Press.International Social Science Council. (2014). Networking conferences for young scientists.
Retrieved April 28, 2014, from http://www.worldsocialscience.org/activities/networking-conferences-for-young-scientists/.
Jaus, H. (1982). The development and retention of environmental attitudes in elementary school children. Journal of Environmental Education, 13(2), 12-18.
Johnson, B., & Manoli, C. C. (2010). The 2-MEV scale in the United States: a measure of children's environmental attitudes based on the theory of ecological attitude. The Journal of Environmental Education, 42(2), 84-97.
Kisiel, J. (2003). Teachers, museums, and worksheets: A closer look at a learning experience. Journal of Science Teacher Education, 14(1), 3-21.
Klemmer, C.D., Waliczek, T.M., & Zajicek, J.M. (2005a). Development of a science achievement evaluation instrument of a school garden program. HortTechnology, 15, 433-438.
Klemmer, C.D., Waliczek, T.M., & Zajicek, J.M. (2005b). The effect of a school gardening program on the science achievement of elementary students. HortTechnology, 15, 448-452.
Knapp, D. (2000). The Thessaloniki declaration: A wake-up call for environmental education? The Journal of Environmental Education, 31(3), 32-39.
Lineberger, S.E. & Zajicek, J.M. (2000). School gardens: Can a hands-on teaching tool affect students’ attitudes and behaviors regarding fruits and vegetables? HorTechnology, 10(3), 593-597.
Maloney, M.P., & Ward, M.P. (1973). Ecology: Let’s hear from the people: An objective scale for the measurement of ecological attitudes and knowledge. American Psychologist, 28(7), 583-586.
Manoli, C., Johnson, B., & Dunlap, R. (2007). Assessing children’s environmental world views: Modifying and validating the New Ecological Paradigm Scale for use with children. Journal of Environmental Education, 38(4), 3-13.
Milfont, T., & Duckit, J. (2009). The environmental attitudes inventory: A valid and reliable measure to assess the structure of environmental attitudes. Journal of Environmental Psychology, 30, 80-94.
Mittelstaedt, R., Sanker, L., & Vanderveer, B. (1999). Impact of a week-long experiential education program on environmental attitude and awareness. Journal of Experiential Education, 22(3), 138-148.
Moore, R. (1995). Growing foods for growing minds: Integrating gardening and nutrition education into the total curriculum. Children’s Environments, 12(2), 134-142.
Musser, L., & Malleus, A. (1994). The children’s attitudes toward the environment scale.The Journal of Environmental Education, 23(3), 22-26.
Nanney, M., Johnson, S., Elliot, M., & Haire-Joshu, D. (2006). Frequency of eating home-grown produce is associated with higher intake among parents and their pre-school aged children in rural Missouri. Journal of the American Dietetic Association, 107(4), 577-584.
National Foundation for Educational Research. (2011). Food growing activities at school report. Retrieved on April 29, 2014, from http://www.nfer.ac.uk/nfer/publications/OFGA01/OFGA01.pdf.
National Gardening Association. (2010). Garden in every school registry. Retrieved April 23, 2010, from http://kidsgardening.com
No Child Left Inside (NCLI) Coalition. (2010). About the No Child Left Inside Act. Retrieved December 16, 2010, from http://www.cbf.org/ncli/action/about.
Orion, N., & Hoffstein, A. (1994). Factors that influence learning during a scientific fieldtrip in a natural environment. Journal of Research in Science Teaching, 33(10), 1097-1119.
Palmer, J. (1998). Environmental education in the 21st century. Routledge, London. Parliamentary Assembly. (1994). Report on an action programme for environmental education in teacher training. Retrieved on May 14, 2014, from http://assembly.coe.int/ASP/Doc/XrefViewHTML.asp?FileID=8192&Language=EN.
Penuel, W. R., Roschelle, J., & Shechtman, N. (2007). Designing formative assessment software with teachers: An analysis of the co-design process. Research and Practice in Technology Enhanced Learning, 2(1), 51-74.).
Public Schools NSW. (2013). Kitchen garden pilot program: Evaluation report. Retrieved on April 29, 2014 from http://www.kitchengardens.det.nsw.edu.au/kg/assets/kitchen_garden_final.pdf.
Rahm, J. (2002). Emergent learning opportunities in an inner-city youth gardening program. Journal of Research in Science Teaching, 39(2), 164-184.
Ratcliffe, M. (2007). Garden-based education in school settings: The effects on children’s vegetable consumption, vegetable preferences, and ecoliteracy. Unpublished doctoral thesis, Tufts University, Boston.
Rennie, L.J. (2007). Learning science outside of school. In: S.K. Abell & N.G. Lederman (Eds.), Handbook of research on science education (pp. 125-167). Mahwah, NJ: Lawrence Erlbaum Assoc., Inc.
Rowe, S. (2002). The role of objects in active, distributed meaning-making. Perspectives on Object-Centered Learning in Museums, 19-35.
Sieber, S. D. (1973). The integration of fieldwork and survey methods. The American Journal of Sociology, 78(6), 1335-1359.
Skelly, S.M. & Zajiceck, J.M. (1998). The effect of an interdisciplinary garden program in the environmental attitudes of elementary school students. HorTechnology, 8(4). 579-583.
Smith, L.L., & Mostenbocker, C.E., (2005). Impact of hands-on science through school gardening in Louisiana public elementary schools. HortTechnology, 15, 439-443.
Smith-Sebasto, N. J., & Cavern, L. (2006). Effects of pre- and post-trip activities associated with a residential environmental education experience on students’ attitudes towards the environment. The Journal of Environmental Education, 37(4), 3-17.
Stokes, E., Edge, A., & West, A. (2001). Environmental education in the educational systems of the European Union: Synthesis report. Retrieved on May 14, 2014 from http://www.medies.net/_uploaded_files/ee_in_eu.pdf.
Thorp, L., & Townsend, C. (December, 2001). Agricultural education in an elementary school: An ethnographic study of a school garden. Proceedings of the 28th Annual National Agricultural Education Research Conference in New Orleans, LA (pp. 347-360). Retrieved from http://www.aaaeonline.org/conference_files/758901.
Waliczek, T.M., Bradley, J.C., Lineberger, R.D., & Zajicek, J.M. (2000). Using a web-based survey to research the benefits of children gardening. HorTechnology, 10(1), 71-76.
Waliczek, T.M., & Zajicek, J.M. (1999). School gardening: Improving environmental attitudes of children through hands-on learning. Journal of Environmental Horticulture, 17, 180-184.
Weigel, R. & Weigel, J. (1978). Environmental concern: The development of a measure. Environment & Behavior, 10, 3-15.
Zimmerman, T.D. (2005). Promoting knowledge integration, of scientific principles and environmental stewardship: Assessing an issue-based approach to teaching evolution and marine conservation. Unpublished doctoral thesis, University of California, Berkeley.
Zimmerman, T.D. (March, 2010). Capturing learning across formal and informal contexts. Paper presented at the National Association for Research on Science Teaching Annual Conference. Philadelphia, PA.
Zimmerman, T.D. (2011). Mobile devices for promoting museum learning. In J.E. Katz, W. LeBar, and E. Lynch (Eds.) Creativity and Technology: Social Media, Mobiles and Museums (pp. 264-291) MuseumsEtc, Edinburgh, UK.