(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 39-49 | DOI: 10.12973/ijese.2015.229a | Article Number: ijese.2015.040
Published Online: January 10, 2015
Abstract
As an examination of the influences of a renewable energy teaching activity employing teaching aids on elementary students’ knowledge of, attitude toward, and behavior of energy saving and carbon reduction, this study designed a teaching experiment in which experimental group was subjected to the teaching with four teaching aids for students to practice whereas the control group was not. Results revealed that the teaching activity significantly improved the attitude and increased some knowledge items but did not affect the behavior. The behavior was more connected to attitude and knowledge for experimental group than for control group. The formation of the positive attitude could be related to the sensory stimulation generated by the teaching aids and associated affective responses when it was analyzed from a product-trial perspective. The analysis should inspire the understanding of the possible mechanisms of how learning experiences affect attitude.
Keywords: Teaching Aids, Renewable Energy Learning, Energy Attitude
References
Aguirre-Bielschowsky, I. (2013). Electricity saving behaviours and energy literacy of New Zealand children. Doctoral dissertation, the University of Otago, New Zealand.
Ashley, C., Oliver, J. D., & Zemanek, J. E. (2011). Trial-attitude formation in green product evaluations. In R. Srinivasan & L. McAlister (Eds.), 2011 AMA Winter Educators’ Conference: Marketing Theory and Applications (pp. 320–321). Chicago, IL: American Marketing Association.
Ballantyne, R., & Packer, J. (2009). Introducing a fifth pedagogy: Experience-based strategies for facilitating learning in natural environments. Environmental Education Research, 15(2), 243–262.
Bodur, H. O., Brinberg, D., & Coupey, E. (2000). Belief, affect, and attitude: Alternative models of the determinants of attitude. Journal of Consumer Psychology, 9(1), 17–28.
Boylan, C. (2008). Exploring elementary students’ understanding of energy and climate change. International Electronic Journal of Elementary Education, 1(1), 1–15.
Carrier, S. J., Tugurian, L. P., & Thomson, M. M. (2013). Elementary science indoors and out: Teachers, time, and testing. Research in Science Education, DOI: 10.1007/s11165-012-9347-5
Choi, K., & Chang, H. (2004). The effects of using the electric circuit model in science education to facilitate learning electricity-related concepts. Journal of the Korean Physical Society, 44(6), 1341–1348.
Corney, G. (2000). Student geography teachers’ pre-conceptions about teaching environmental topics. Environmental Education Research, 6(4), 313–329.
Crapper, M., Donald, R., Hill, D., Hall, A., & French, W. (2008). Models for teaching sustainable development to children. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 161(4), 229–236.
Evans, G. W., et al. (2007). Young children’s environmental attitudes and behaviors. Environment and Behavior, 39, 635–659.
Falk, J. H., Koran, J. J. Jr., & Dierking, L. D. (1986). The things of science: Assessing the learning potential of science museums. Science Education, 70, 503–508.
Fazio, R. H., & Zanna, M. P. (1981). Direct experience and attitude-behavior consistency. In L. Berkowitz (Ed.), Advances in experimental social psychology, Vol. 14 (pp. 161–202). New York: Academic Press.
Finson, K. D., & Enochs, L. G. (1987). Student attitudes toward science-technology-society resulting from visitation to a science-technology museum. Journal of Research in Science Teaching, 24, 593–609.
Gobe, M. (2001). Emotional branding. New York: Allworth.
Ibeh, G. F., Onah, D.U., Umahi, A. E., Ugwuonah, F. C., Nnachi, N. O., & Ekpe, J.E. (2013). Strategies to improve attitude of secondary school students towards physics for sustainable technological development in Abakaliki L.G.A, Ebonyi, Nigeria. Journal of Sustainable Development Studies, 3(2), 127-135.
Jarvis, T., & Pell, A. (2005). Factors influencing elementary school children's attitudes to science before, during and following a visit to the UK National Space Centre. Journal of Research in Science Teaching, 42(1), 53-83.
Kim, J., & Morris, J. D. (2007). The power of affective response and cognitive structure in product-trial attitude formation. Journal of Advertizing, 36(1), 95–106.
Kolb, D. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs, NJ: Prentice Hall.
Lee, L. S., Lin, K. Y., Guu, Y. H., Chang, L. T., & Lai, C. C. (2012). The effect of hands-on ‘energy saving house’ learning activities on elementary school students’ knowledge, attitudes, and behavior regarding energy saving and carbon-emissions reduction. Environmental Education Research, DOI: 10.1080/13504622.2012.727781
Lin, M. G. (2012). Learning effectiveness of integrating the greenergy teaching aids into the elementary school curriculum. Unpublished master’s thesis, National University of Tainan, Taiwan.
Liu, S. Y., Chen, R. H, Chiu, Y. R, & Lai, C. M. (2012). Building energy and children: Theme-oriented and experience-based course development and educational effects. Journal of Asian Architecture and Building Engineering, 11(1), 185–192.
Morris, J. D., Woo, C., Geason, J. A., & Kim, J. (2002), The power of affect: Predicting intention. Journal of Advertising Research, 42(3), 7-17.
Orr, D.W. (1992). Ecological literacy: Education and the transition to a postmodern world. New York: State University of New York Press.
Osborne, R., & Freyberg, P. (1985). Learning in science: The implications of children’s science. Melbourne: Heinemann.
Ou, C. H., Fang, P. L., Miao, R. I., Lai, C. H., & Pan, H. T. (2007). A study on the effects of implementing experiential energy education curriculum in an elementary school on the pupils’ energy literacy. 2007 Annual report of research and development achievements made by authorities and schools of Kaohsiung City Government.
Perry, D. L. (1993). Designing exhibits that motivate. In M. Borun, S. Grinell, P. McNamara, & B. Serrell (Eds.), What research says about learning in science museums, Vol. 2 (pp. 25–29). Washington, DC: Association of Science.
Ramey-Gassert, L., Walberg, H. J., III, & Walberg, H. J. (1994). Reexamining connections: Museums as science learning environments. Science Education, 78, 345–363.
Roschelle, J. (1995). Learning in interactive environments: Prior knowledge and new experience. In J. H. Falk & L. D. Dierking (Eds.), Public institutions for personal learning: Establishing a research agenda (pp. 37-51). Washington, DC: American Association of Museums.
Schmitt, B. H. (1999). Experiential marketing. Journal of Marketing Management, 15, 53-67.
Sneath, J. Z., Finney, R. Z., & Close, A. G. (2005). An IMC approach to event marketing: The effects of sponsorship and experience on consumer attitudes. Journal of Advertising Research, 45(4), 373-381.
Steup, M. (2006). Analysis of knowledge. In E. N., Zalta (Ed.), Stanford encyclopedia of philosophy. Retrieved 04/04/2014 from http://plato.stanford.edu/entries/knowledge-analysis/
Takaki, K. Jinno, N., Kajiwara, S., Yamaguchi, A., Kikuchi, M., & Suzuki, M. (2007). Development of energy and environment education program and teaching aids for upper grade of elementary school by effective utilization of regional collaboration. IEEJ Transactions on Fundamentals and Materials, 127(4), 205-211.
Tytler, R. (2002). Teaching for understanding in science: Student conceptions research and changing views of learning. Australian Science Teachers’ Journal, 48(3), 14-21.