(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 21-38 | DOI: 10.12973/ijese.2015.228a | Article Number: ijese.2015.039
Published Online: January 10, 2015
Abstract
This multi-university, three-year longitudinal study examined the relationship among seven secondary science teachers’ personal, student and scientific epistemologies. Paying close attention to each participant’s use of metaphor when speaking about his/her learning, students’ learning and the products/processes of science, we were able to discern each participant’s epistemological stance as indicating the acquisition metaphor of learning or the participation metaphor of learning or some combination of the two (pluralistic). We compared video recordings of each participant’s classroom teaching practice to develop an understanding for how their epistemological stance might relate to that practice. Based on our results, we contradict the current paradigm that beliefs guide practice, by positing that practice might actually determine beliefs. Where teachers having more field experiences were more likely to talk about learning through doing (participation) and those whose practice emphasized knowledge transfer, adhered to the acquisition metaphor for student learning. If teacher practice influenced their beliefs, this has profound implications for the structure of teacher education programs.
Keywords: Science teaching, epistemology, teacher beliefs, teacher practice, metaphors of learning.
References
Abd-El-Khalick, F. & Lederman, N. G. (2000). The influence of history of science courses on students' views of nature of science. Journal of Research in Science Teaching, 37, 1057-1095.
Abd-El-Khalick, F. (2001). Embedding nature of science instruction in preservice elementary science courses: Abandoning scientism, but. Journal of Science Teacher Education, 12(3), 215-233.
Aikenhead, G., & Ryan, G. (1992). The development of a new instrument: "views on science-technology-society" (VOSTS). Science Education, 76, 477-491.
Bartos, S., & Lederman, N. (2014). A new perspective on teachers' conceptions of nature of science and scientific inquiry and their classroom practice. Paper presented at the Association of Science Teacher Educators 2014 International Conference, Antonio, Texas.
Barry, D., Tillotson, J.W., & Young, M.J. (in preparation). Validating the Beliefs About Reformed Science Teaching and Learning Instrument for Use with Secondary Science Teachers.
Bereiter, C. (2002). Education and mind in the knowledge age. Mahwah, N.J.: L. Erlbaum Associates.
Bickmore, B., Thompson, K., Grandy, D., & Tomlin, T. (2009). Commentary: On teaching the nature of science and the science-religion interface. Journal of Geoscience Education, 57(3), 168-177.
BouJaoude, S. (2000). Conceptions of science teaching revealed by metaphors and by answers to open-ended questions. Journal of Science Teacher Education, 11(2), 173-186.
Boyd, D., Lankford, H., Loeb, S., Rockoff, J., & Wyckoff, J. (2008). The narrowing gap in New York City teacher qualifications and its implications for student achievement in high-poverty schools. Journal of Policy Analysis and Management, 27(4), 793-818.
Brickhouse, N. (1990). Teachers' beliefs about the nature of science and their relationship to classroom practice. Journal of Teacher Education, 41, 53-62.
Bryan, L. (2003). Nestedness of beliefs: Examining a prospective elementary teacher's belief system about science teaching and learning. Journal of Research in Science Teaching, 40(9), 835-868.
Carey, S. (2009). The origin of concepts. Oxford; New York: Oxford University Press.
Chai, C., Teo, T., & Lee, C. (2009). The change in epistemological beliefs and beliefs about teaching and learning: A study among pre-service teachers. Asia - Pacific Journal of Teacher Education, 37(4), 351-362.
Chetty, R., Friedman, J., & Rockoff, J.E. (2013). Measuring the impacts of teachers II: Teacher value-added and student outcomes in adulthood. NBER Working Paper No. 19424. September 2013, Revised April 2014. JEL No. H0.
Christodoulou, A., Osborne, J., Richardson, K., Howell-Richardson, C., & Simon, S. (2010). A study of student beliefs about the epistemology of science and their relationship with students' personal epistemologies.Unpublished manuscript.
Clement, J. J. (2008). Creative model construction in scientists and students: The role of imagery, analogy, and mental simulation. Dordercht: Springer.
Clotfelter, C. T., Ladd H. F., & Vigdor, J. L. (2007) How and why do teacher credentials matter for student achievement? (CALDER working paper) Retrieved April 3, 2014, from, http://www.caldercenter.org/PDF/1001058_Teacher_Credentials.pdf.
Cochran-Smith, M., & Zeichner, K. (2005). Executive summary. In M. Cochran-Smith & K. Zeichner (Eds.), Studying Teacher Education: The Report of the AERA Panel on Research and Teacher Education (p. 1-36). Mahwah, NJ: Lawrence Earlbaum Associates.
Darling-Hammond, L., & Bransford, J. (with LePage, P.,Hammerness, K.,& Duffy, H.). (2005). Preparing teachers for a changing world: What teachers should learn and be able to do. San Francisco, CA: Jossey-Bass.
Davies, B., & Harré, R. (1990). Positioning: The discursive production of selves. Journal for the Theory of Social Behavior, 20(1), 43-63.
Davis, E. A., Petish, D., &Smithey, J. (2006). Challenges new science teachers face. Review of Educational Research, 76(4), 607-651.
Driscoll, M. (2005). Psychology of learning for instruction (3rd ed.). New York: Allyn& Bacon.
Grossman, P. (2008). Responding to our critics: From crisis to opportunity in research on teacher education. Journal of Teacher Education, 59(1), 10-23.
Haney, J. J., Czerniak, C. M., & Lumpe, A. T. (1996). Teacher beliefs and intentions regarding the implementation of science education reform strands. Journal of Research in Science Teaching, 33(9), 971-993.
Hanuscin, D. L. (2013). Critical Incidents in the development of pedagogical content knowledge for teaching the nature of science: A prospective elementary teacher's journey. of Science Teacher Education, 24(6), 933-956.
Hodson, D. (1993). Philosophic stance of secondary school science teachers, curriculum experiences, and children's understanding of science: Some preliminary findings. Interchange, 24(1&2), 41-52.
Jackson, D. (2011). Authentic inquiry and science teachers' epistemological beliefs: A multiple case study. ASTE 2011 Internatinal Conference, Minneapolis, MN.
Jones, G., & Carter, G. (2007). Science teachers attitudes and beliefs. In S. Abell, & N. Lederman (Eds.), Handbook of research on science education (pp. 1067-1104). Mahwah, NJ: Lawrence Erlbaum Associates.
Kahneman, D. (2011). Thinking, fast and slow (1st ed.). New York: Farrar, Straus and Giroux.
Kang, N., & Wallace, C. (2005). Secondary science teachers' use of laboratory activities: Linking epistemological beliefs, goals, and practices. Science Education, 89(1), 140 – 165.
Kienhues, D., Bromme, R., & Stahl, E. (2008). Changing epistemological beliefs: The unexpected impact of a short-term intervention. British Journal of Educational Psychology, 78, 545-565.
Kinchin, I., Hatzipanagos, S., & Turner, N. (2009). Epistemological separation of research and teaching among graduate teaching assistants.Journal of further and Higher Education, 33(1), 45 – 55.
Korthagen, F. A. J. (2004). In search of the essence of a good teacher: Towards a more holistic approach in teacher education. Teaching and Teacher Education, 20(1), 77-97.
Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: University of Chicago Press.
Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. New York, NY: Basic Books.
Lederman, N., Abd-El-Khalick, F., Bell, R., & Schwartz, R. (2002). Views of nature of science questionaire (VNOS): Toward valid and meaningful assessment of learners' conceptions of nature of science. Journal for Research in Mathematics Education, 39, 497-521.
Lederman, N. G. (1999). Teachers' understanding of the nature of science and classroom practice: Factors that facilitate or impede the relationship. Journal of Research in Science Teaching, 36(8), 916-929.
Luehmann, A. L. (2007). Identity development as a lens to science teacher preparation. Science Education, 91(5), 822-839.
Luft, J. (2007). Minding the gap: Needed research on beginning/newly qualified science teachers. Journal of Research in Science Teaching, 44(4), 532-537.
Luft, J.A., Roehrig, G.H., & Patterson, N.C. (2003). Contrasting landscapes: A comparison of the impact of different induction programs on beginning secondary science teachers’ practices, beliefs, and experiences. Journal of Research in Science Teaching, 40(1), 77-97.
Luft, J., &Roehrig, G. (2007). Capturing science teachers' epistemological beliefs: The development of the teacher beliefs interview. The Electronic Journal of Science Education, 11(2), 38-63.
Maggioni, L., VanSledright, B., & Alexander, P. (2009). Walking on the borders: A measure of epistemic cognition in history. The Journal of Experimental Education, 77(3), 187-213.
Mansour, N. (2009). Science Teachers’ Beliefs and Practices: Issues, Implications and Research Agenda. International Journal of Environmental & Science Education, 4(1), 25-48.
McGinnis, J. R., & Parker, C., & Graeber, A. O. (2004). A cultural perspective of the induction of five reform-minded beginning mathematics and science teachers. Journal of Research in Science Teaching, 41(7), 720-747.
Minogue, J. (2010). What is the teacher doing? what are the students doing? an application of the draw-a-science-teacher-test. Journal of Science Teacher Education, 21(7), 767-781.
National Research Council. (2002). The knowledge economy and postsecondary education: Report of a workshop. Committee on the Impact of Changing Economy on Post-secondary Education. Division of Behavioral and Social sciences and education. Center for Education. P.A. Graham and N.G. Stacey (Eds.). Washington, DC: National Academies Press.
National Research Council. (2010). Preparing Teachers: Building Evidence for Sound Policy. Washington, DC: National Academies Press.
Nersessian, N. J. (2008). Creating scientific concepts. Cambridge, Mass.: MIT Press.
OED. (1994). Oxford english dictionary (2nd ed.). Oxford, UK: Oxford University Press.
Pajares, M. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62(3), 307-332.
Penick, J., &Yager, R. (1988). Science teacher education: A program with a theoretical and pragmatic rationale. Journal of Teacher Education, 39, 59-64.
Reddy, M. (1979). The conduit metaphor: A case of frame conflict in our language about language. In A. Ortony (Ed.), Metaphor and thought (pp. 284-324). Cambridge; New York: Cambridge University Press.
Reeder, S., Utley, J., & Cassel, D. (2009). Using metaphors as a tool for examining preservice elementary teachers' beliefs about mathematics teaching and learning. School Science and Mathematics, 109(5), 290-297.
Richardson, V. (1996). The role of attitudes and beliefs in learning to teach. In J. Sikula (Ed.), The handbook of research in teacher education (2nd ed., pp. 102-119). New York: Macmillan.
Richardson, L., & Simmons, P. (1994). Self-Q research method and analysis, teacher pedagogical philosophy interview: Theoretical background and samples of data. Athena, GA: University of Georgia.
Rivkin, S. G., Hanushek, E. A., & Kain, J. F. (2005). Teachers, schools, and academic achievement. Econometrica, 73(2), 417-458.
Robinson, J. & Yager, R.E. (1998). Translating and using resesarch for improving teacher education in science and mathematics. Final reprot from the OERI-funded Chatauqua ISTEP Research Project (Salish II). Supported by the Office of Eductional Research and Improvement, US Department of Education (Grant No. R168U60001).
Roehrig, G. H., & Kruse, R. A. (2005). The role of teachers' beliefs and knowledge in the adoption of a Reform‐Based curriculum. School Science and Mathematics, 105(8), 412-422.
Salish I Research Project Final Report. (1997). Secondarr Science and MathTeacher Preparation Programs: Influences on New Teachers and their Students. Iowa City, IA: Science Eduation Center, The University of Iowa.
Salter, I. Y., & Atkins, L. J. (2014). What students say versus what they do regarding scientific inquiry. Science Education, 98(1), 1-35.
Savasci, F. & Berlin, D. R. (2012). Science teacher beliefs and classroom practice related to constructivism in different school settings. Journal of Science Teacher Education, 23(1), 65-86.
Schalock, D. (2004). Connecting teaching, teacher preparation, and student learning: The importance of theory development. Teachers for a New Era Quarterly, 1(4), 1-2.
Schemp, P., Sparkes, A., & Templin, T. (1993). The micro politics of teacher induction. American Educational Research Journal, 30, 447-472.
Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one. Educational Researcher, 27(2), 4 – 13.
Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform.
Simmons, P.E., Emory, A., Carter, T., Coker, T., Finnegan, B., Crockett, D.,… Labuda, K. (1999). Beginning teachers: beliefs and classroom actions. Journal of Research in Science Teaching, 36(8), 930-954.
Southerland, S., Johnston, A., & Sowell, S. (2006). Describing teachers' conceptual ecologies for the nature of science. Science Education,90(5), 874-906.
Tillotson, J.W., Yager, R.E., & Penick, J. (2007). Reflections on Preservice Program Experiences. (Unpublished Interview Protocol), Syracuse, NY: Syracuse University.
Tillotson, J.W. & Young, M.J. (2013). The IMPPACT project: A model for studying how preservice program experiences influence science teachers’ beliefs and practices. International Journal of Education in Mathematics, Science and Technology, 1(3), 148-161.Tobias, S. (2010). Science teaching as a profession: Why it isn't. How it could be. Keynote presentation to the Association of Science Teacher Educators Annual International Meeting, Sacramento CA, January 14-16, 2010.
Tobias, S. (2010). Science teaching as a profession: Why it isn't. How it could be. Keynote presentation to the Association of Science Teacher Educators Annual International Meeting, Sacramento CA, January 14-16, 2010.
Tobin, K., & LaMaster, S. U. (1995). Relationships between metaphors, beliefs, and actions in a context of science curriculum change. Journal of Research in Science Teaching, 32(3), 225-242.
Tsai, C. (2002). Nested epistemologies: Science teachers' beliefs of teaching, learning and science. International Journal of Science Education, 24(8), 771-783.
Tsai, C. (2007). Teachers' scientific epistemological views: The coherence with instruction and students' views. Science Education, 91(2), 222-243.
Waters-Adams, S. (2006). The relationship between understanding of the nature of science and practice: The influence of teachers' beliefs about education, teaching and learning. International Journal of Science Education, 28(8), 919-944.
Wilson, S.M., Floden, R.E., & Ferrini-Mundy, J. (2001). Teacher preparation research: An insider’s view from the outside. Journal of Teacher Education, 53(3), 190-204.
Windschitl, M. (2005). Guest editorial: The future of science teacher preparation in America: Where is the evidence to inform program design and guide responsible policy decisions? Science Education, 89(4), 525-534.