(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 1-20 | DOI: 10.12973/ijese.2015.227a | Article Number: ijese.2015.038
Published Online: January 10, 2015
Abstract
The study developed and applied an index for measuring the level of complexity of full authentic scientific inquiry. Complexity is a fundamental attribute of real life scientific research. The level of complexity is an overall reflection of complex cognitive and metacognitive processes which are required for navigating the authentic inquiry through high levels of uncertainty, from the unknown to the known. To develop the index, an educational framework was set up, in which five teams of high school students were conducting a full authentic scientific inquiry, using online facilitation. Protocols obtained from the teams’ on-line communications were used for developing the Level of Complexity of Scientific Inquiry (LCSI) index. The index measures complexity by measuring the number of deviations from a linear straightforward inquiry process and the magnitude of these deviations. In structured teacher guided inquiries, the index measurement would be zero. The more students activate self-regulatory processes and grapple with the unknown, the higher is the obtained measurement.
Keywords: Scientific inquiry; authentic inquiry; inquiry assessment; science education assessment
References
American Association for the Advancement of Science. (1993). Benchmarks for science literacy (Project 2061). New York, NY: Oxford University Press.
Alonzo, A. & Aschbacher, P. R. (2004). Value Added? Long assessment of students’ scientific inquiry skills. Presented at the Annual Meeting of the American Educational Research Association, San Diego, CA.
Bandura, A., & Schunk, D. H. (1981). Cultivating competence, self-efficacy, and intrinsic interest through proximal self-motivation. Journal of Personality and Social Psychology, 41, 586–598.
Buck, L. B., Bretz, S. L., & Towns, M. H. (2008). Characterizing the level of inquiry in the undergraduate laboratory Journal of College Science Teaching, 52-58.
Chinn, C. A., & Malhotra, B. A. (2001). Epistemologically authentic scientific reasoning. In K. Crowley, C. D. Schunn, & T. Okada (Eds.), Designing for science: Implications from everyday, classroom, and professional settings (pp. 351–392). Mahwah, NJ: Erlbaum.
Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86, 175-218.
Crawford, B. A. (2000). Embracing the essence of inquiry: New roles for science teachers. Journal of Research in Science Teaching, 37, 916–937.
Fahy, P. (2001). Addressing some common problems in transcript analysis. International Review of Research in Open and Distance Learning, 1(2). http://www.irrodl.org/content/v1.2/research.html/#Fahy (Retrieved August 15, 2013).
Gobert,J., Heffernan, N., Ruiz, C., & Ryung, K. (2007). AMI: ASSISTments Meets Inquiry. Proposal NSF-DRL# 0733286 funded by the National Science Foundation.
Gobert, J. D., Sao Pedro, M. A., Baker, R. S. J., Toto, E., & Montalvo, O. (2012). Leveraging educational data mining for real-time performance assessment of scientific inquiry skills within microworlds. The Journal of Educational Data Mining , 4, 105-143.
Gotwals, A. & Songer, N. (2006). Measuring Students’ Scientific Content and Inquiry Reasoning. In Eds. L. Erlbuam Associates (Ed.), Proceedings of the 7th International Conference of the Learning Sciences, (pp.196-202). ICLS 2006, S. Barab, K. Hay, and D. Hickey, Bloomington.
Herron, M. D. (1971). The nature of scientific enquiry. School Review, 79, 171-212.
Hollingworth, W. R., & McLoughlin, C. (2003). Even foundation level students can get the HOTS for science! Paper presented at the 7th Pacific Rim, First Year in Higher Education Conference, QUR Gardens Point Campus.
International Council for Science (2011). Report of the ICSU ad-hoc review panel on science education (2011). Paris, France: International Council for Science.
Kipnis, M., & Hofstein, A. (2008). The inquiry laboratory as a source of development of metacognitive skills. Science and Mathematics Education, 6, 601-627.
Kramarski, B., & Mevarech, Z. R. (2003). Enhancing mathematical reasoning in the classroom: The effects of cooperative learning and metacognitive training. American Educational Research Journal, 40, 281-298.
Lee, H. S., & Songer, N. B. (2003). Making authentic science accessible to students. International Journal of Science Education, 25, 1-26.
Loh, B., Reiser, B. J., Radinsky, J., Edelson, D. C., Gomez, L. M., & Marshall, S. (2001). Developing reflective inquiry practices: A case study of software, the teacher, and students. In K. Crowley, C. Schunn, & T. Okada (Eds.), Designing for science: Implications from everyday, classroom, and professional settings (pp. 279-323). Mahwah, NJ: Erlbaum.
Lorch, R. F., Lorch, E. P., Calderhead, W. J., Dunlap, E. E., Hodell, E. C., & Freer, B. D. (2010). Learning the control of variables strategy in higher and lower achieving classrooms: Contributions of explicit instruction and experimentation. Journal of Educational Psychology, 102, 1, 90–101.
Lunsford, E., & Melear, C. T. (2004). Using scoring rubrics to evaluate inquiry. Journal of College Science Teaching, 34, 34-38.
Martin-Hansen, Lisa. (2002). Defining Inquiry. The Science Teacher, 69(2), 34-37.
Myers, M. J., & Burgess, A. B. (2003). Inquiry-based laboratory course improves students’ ability to design experiments and interpret data. Advances in Physiology Education, 27(1), 26–33.
Mevarech, Z. R., & Kramarski, B. (1997). IMPROVE: A multidimensional method for teaching mathematics in heterogeneous classrooms. American Educational Research Journal, 34, 365-394.
Michalsky, T. (2003). The effects of metacognitive guidance within asynchronous learning networks on inquiry learning processes (Unpublished doctoral dissertation). Bar-Ilan University, Israel.
National Research Council (1996). National science education standards. Washington, DC: National Academy Press.
National Research Council (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academy Press
National Research Council (2005). National science education standards. Washington, DC: National Academy Press.
National Research Council (2012). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
Organization for Economic Co-operation and Development. (2003). PISA literacy skills for the world of tomorrow: Further results from PISA 2000. Paris, France: Organization for Economic Co-operation and Development.
Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and self-concept beliefs in mathematical problem solving: A path analysis. Journal of Educational Psychology, 86, 193–203.
Quellmalz, E., Timms, M., & Schneider, S. (2009). Assessment of student learning in science simulations and games. National Research Council Report, Washington, D.C.
Reiser, B. J., Tabak, I., Sandoval, W. A., Smith, B. K., Steinmuller, F., & Leone, A. J. (2001). BGuILE: Strategic and conceptual scaffolds for scientific inquiry in biology classrooms. In S. M. Carver & D. Klahr (Eds.), Cognition and instruction: Twenty-five years of progress (pp. 263-305). Mahwah, NJ: Erlbaum.
Rourke, L., Anderson, T., Garrison, D. R., & Archer, W. (2001). Methodological issues in the content analysis of computer conference transcripts. International Journal of Artificial Intelligence in Education, 12, 8–22.
Ruiz, G. M., Carlton, J. T., Grosholtz, E. D., & Hines, A. H. (1997). Global invasions of marine and astuarine habitats by non- indigenous species: Mechanisms, extent and consequences. American Zoologist, 37, 621–632.
Salmon, G. (2002). Mirror, mirror, on my screen…Exploring online reflections. British Journal of Educational Technology, 33, 379-391.
Scalise, K., Timms, M., Clark, L., & Moorjani, A. (2009). Student learning in science simulatons: What makes a difference? Paper presented at the America Educational Research Association, San Diego, CA.
Schwab, J.J. (1962). The teaching of science as enquiry. In J.J. Schwab and P.F. Brandwein (ED.), The teaching of science, (pp. 3–103). Cambridge, MA: Harvard University Press.
Schwartz, R. S. Lederman, N. G. & Crawford, B. A. (2004). Developing views of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry. Science Education, 88, 610-645.
Solomon, J. (1989). The social construction of school science. In R. Millar (Ed.), Doing science: Images of science in science education (pp. 126-136). Philadelphia, PA: The Falmer Press.
Spanier, E., & Galil, S. (1991). Lessepsian migration: A continuous biogeographical process. Endeavor, New Series, 15, 102-106.
Sternberg, R. J. (1998). Metacognition, abilities and developing expertise: What makes an expert student? Instructional Science, 26, 127-140.
Tamir, P., Nussinovitz, R., & Friedler, Y. (1982). The design and use of practical tests assessment inventory. Journal of Biological Education, 16, 42-50.
Tytler, R. (2007). Re-imagining science education: Engaging students in science for Australia’s future. Victoria, Australia: Australian Council for Educational Research Press.
Wu, P. Wu, H., & Hsu, Y. (2014). Establishing the criterion-related, construct, and content validities of a simulation-based assessment of inquiry abilities. International Journal of Science Education, 36(10), 1630-1650.
Zimmerman, B.J. (2000). Self-efficacy: An essential motive to learn. Contemporary Educational Psychology, 25, 82–91.
Zohar, A. (1996). To learn, to think and to learn to think. [Hebrew]. Jerusalem, Israel: Branko Weiss Institution for Development of Thinking.