(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 35-52 | DOI: 10.12973/ijese.2016.288a | Article Number: ijese.2016.004
Published Online: February 02, 2016
Abstract
Worldwide studies have revealed an important issue in that an increasing percentage of students within the X – Y age group are not interested in science. Many students, especially females, have negative feelings and attitudes toward science, which discourages them from continuing with scientific inquiries. There are limited studies related to the factors predicting school students’ attitude toward science; therefore, the purpose of this study is to determine the relationships among the seventh grade elementary students’ attitudes toward science, their learning approaches, motivational goals, science achievement and students’ nature of science (NOS) views. The questionnaires for this study were administered online to 3,598 seventh grade students in different regions and cities of Turkey. The convenience sampling method was used in this study. The correlation results revealed the positive relationship between attitude toward science and the other variables. Multiple regression analysis indicated that while students’ meaningful learning, self-efficacy, and nature of science views have a positive contribution, rote learning contributed negatively to the model. The findings also showed that parents’ income and education level had a significant effect on students’ attitude toward science.
Keywords: attitude toward science, motivational goal, self-efficacy, nature of science
References
Aldoplhe, F. S. G., Fraser, B. J., & Aldigre, J. M. (2003). A cross national study of learning environment and attitudes amoung junior secondary science students in Australia and Indonesia. Paper presented at the Third International Science, Mathematics and Technology Education Conference, East London, South Africa.
Aldridge, J. M., & Fraser, B. J. (2000). A cross-cultural study of classroom learning environments in Australia and Taiwan.Learning Environments Research, 3, 101–134.
Ali, M. M., Yager, R. E., Hacieminoglu, E., & Caliskan, İ. (2013). Changes in student attitudes regarding science when taught by teachers without experiences with a model professional development program. School Science and Mathematics, 113(3), 109-119.
Ames, C., & Archer, J. (1988). Achievement goals in the classroom: Student’s learning strategies and motivation processes.Journal of Educational Psychology, 80, 260-270.
Anderman, E. R., & Young A. J. (1994). Motivation and strategy use in science: Individual differences and classroom effects.Journal of Research in Science Teaching, 31, 811-831.
Archer, J., & McDonald, M. (1991). Gender roles and school subjects in adolescent girls. Educational Research, 33, 55-64.
Arısoy, N. (2007). Examining 8th grade students’ perception of learning environment of science classrooms inrelation to motivational beliefs and attitudes. Unpublished Theses in Middle East Technical University, Ankara, Turkey.
Ausubel, D.P. (1963). The psychology of meaningful verbal learning. New York: Grune & Stratton.
Azizoğlu, N., & Çetin, G. (2009). The effect of learning style on middle schools students’ motivation and attitudes towards science, and the relationships among these variables. Kastamonu Education Journal, 17(1), 171-182.
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall.
Bandura, A. (1993). Perceived self-efficacy in cognitive development and functioning. Educational Psychologist, 28, 117-148.
BouJaoude, S. B. (1992). The relationship between high school students' learning strategies and the change in their misunderstandings during a high school chemistry course. Journal of Research in Science Teaching, 29(7), 687-699.
Buehl, M. M. (2003). At the crossroads: Exploring the intersection of epistemological beliefs, motivation, and culture. Paper presented at the Annual Meeting of the American Educational Research Association, April, Chicago, IL.
Caliskan, İ. S. (2004). The effect of inquiry-based chemistry course on students' understanding of atom concept, learning approaches, motivation, self-efficacy, and epistemological beliefs. Unpuplished master thesis, The Middle East Technical University, Ankara.
Catsambis, S. (1995). Gender, race, ethnicity, and science education in the middle grades. Journal of Research in Science Teaching, 32(3), 243-257.
Cavallo, A. M. L., & Schafer, L. E. (1994). Relationships between student’s meaningful learning orientation and their understanding of genetic topics. Journal of Research in Science Teaching, 31(4), 393-418.
Cavallo, A. M. L. (1996).Meaningful learning reasoning ability and student’s understanding and problem of genetics topics.Journal of Research in Science Teaching, 38, 625-656.
Cavallo, A. M. L., Rozman, M., Larabee, T., Ishikawa, C. (2001). Shifts in male and female students' learning, motivation, beliefs, and scientific understanding in inquiry-based college physics course. Paper presented at the annual conference of the National Association for Research in Science Teaching, St. Louis, MO.
Cavallo, A. M. L., Rozman, M., Blickenstaff, J., & Walker , N. (2003). Learning, reasoning, motivation, and epistemological beliefs. Journal of College Science Teaching, 33, 18-23.
Cavallo, A. M. L., Rozman, M., & Potter, W. H. (2004). Gender differences in learning constructs, shifts in learning constructs, and their relationship to course achievement in a structured inquiry, yearlong collage physic course for life science majors. School Science and Mathematics, 104(6), 288-301.
Cohen, J. W. (1988). Statistical power analysis for the behavioral sciences (2nd edition). Hilsdale, NJ: Lawrence Erlbaum Associates.
DeBacker, T. K., & Nelson, R. M. (2000). Motivation to learn science: Differences related to gender, class type, and ability level. Journal of Educational Research, 93(4), 245-254.
den Brok, P., Fisher, D., & Rickards, T. (2004). Predicting Australian Students’ Perceptions Of Their Teacher Interpersonal Behavior. Paper presented at the annual meeting of the American Educational Research Association, San Diego.
Dhindsa, H. S. & Chung, G. (2003). Attitudes and achievement of Bruneian science students. Internalational Journal of Science Education, 25, 907-922.
Dweck, C. S. (1986). Motivational processes affecting learning. American Psychologist, 41, 1040-1048.
Edmondson, K.M. (1989). The influence of students’ conceptions of scientific knowledge and their orientations to learning on their choices of learning strategy in a college introductory level biology course. Unpublished doctoral dissertation, Cornell University, Ithaca, NY.
Edmondson, K.M., & Novak, D.N. (1993). The interplay of scientific epistemological views, learning strategies, and attitudes of college students. Journal of Research in Science Teaching, 30, 547-559.
Fraser, J. B. (1978). Development of a test of science-related attitudes, Science Education, 62(4), 509-515.
Freedman, M. P. (1997). Relationship among laboratory instruction, attitude toward science, and achievement in science knowledge. Journal of Research in Science Teaching, 34, 343-357.
Garcia, T., & Pintrich, P. R. (1992). Critical thinking and its relationship to motivation, learning strategies, and classroom experiences. Paper presented at the annual meeting of the American Psychological Association, Washington, DC.
Greenfield, T. A. (1996). Gender, etnicity, science achievement and attitudes. Journal of Research in Science Teaching, 33,901-933.
Hacieminoglu, E., Yilmaz-Tuzun, O., & Ertepinar, H. (2009). Investigating elementary students’ learning approach, motivational goals and achievement in science. Hacettepe University Journal of Education, 37, 72-83.
Hacieminoglu, E., Yilmaz-Tuzun, O., & Ertepinar, H. (2011). Middle school students’ attitude toward science in constructivist curriculum environment. International Journal on New Trends in Education and Their Implications, 2(3), 1-6.
Hacieminoglu, E., Yilmaz-Tuzun, O. & Ertepinar, E. (2012). Development and validation of nature of science instrument for elementary students. Education 3-13: International Journal of Primary, Elementary and Early Years Education, (online published). doi:10.1080/03004279.2012.671840.
Hykle, J. A. (1993, April). Template for gender-equitable science program. Paper presented at the annual meeting of the National Association for Research in Science Teaching. Atlanta, GA.
Jones, G.M., Howe, A., & Rua, M. J. (2000). Gender differences in students’ experiences, interests and attitude toward science and scientists. Science Education, 84, 180-192.
Kahle, J.B.; & Damnjanovic, A. (1997). How research help address gender equity. Research Matters- to the Science Teacher, 9703, 1-3. Available on line at http://www.narst.org/publications/research/gender2.cfm.
Kang, S., Scharmann, L. C., Noh, T., & Koh, H. (2005). The influence of students’ cognitive and motivational variables in respect of cognitive conflict and conceptual change. International Journal of Science Education, 27, 1037–1058.
Kaplan, A., & Midgley, C. (1997). The effect of achievement goals: Does level of perceived academic competence make a difference? Contemporary Educational Psychology, 22, 415-435.
Kizilgunes, B., Tekkaya, C., & Sungur, S. (2009). Modeling the relations among students’ epistemological beliefs, motivation, learning approach, and achievement. The Journal of Educational Research, 102(4), 243-255.
Klopfer, L. E. (1976). Astructure for the affective domain in the relation to science education. Science Education, 60, 299-312.
Koran, M. L., & Koran, J. J. (1984). Aptitude- treatment interaction research in science education. Journal of Research in Science Teaching 21(8), 793-808.
Lawrenz, F. P. (1976). Student perception of the classroom learning environment in biology, chemistry and physics courses.Journal of Research in Science Teaching, 13, 351– 353.
Lin, Y. G., & McKeachie, W. J. (1999). College student intrinsic and/or extrinsic motivation and learning. (ERIC Document Reproduction Service No. ED435954).
Middleton, M., & Midgley, C. (1997). Avoiding the demonstration of lack of ability: An underexplored aspect of goal orientation. Journal Educational Psychology, 89, 70-718.
Miller, L., Lietz, P., & Kotte, D. (2002). On decreasing gender differences and attitudinal changes. Factors influencing Australian and English pupils’ choice of a career in science. Psyhology, Evolution, and Gender, 4, 69- 92.
Murphy, P. K., & Alexander, P. (2000). A motivated exploration of motivation terminology. Contemporary Educational Psychology, 25, 3-53.
Newhouse, N. (1990). Implication of attitudes and behavior research for environmental conservation. The Journal of Environmental Education, 22(1), 26-32.
Novak, J. D., Ring, D. G., & Tamir, P. (1971). Interpretations of research findings in terms of Ausubel’s theory and implications for science Education. Science Education, 55(4), 483-526.
Novak, J. (1988). Learning science and the science of learning. Studies in science education, 15, 77-101.
Novak, J., Kerr, P., Donn, S., & Cobern, W. (1989).Epistemological issues in science education. Symposium presented at the Annual Conferance of the National Association for Research in Science Teaching, San Francisco, CA.
Oakes, J. (1990). Opportunities, achievement and choice: Woman and minority students in science and mathematics.Review of Research in Education, 16, 153-222.
Oh. P. S., & Yager, R. E. (2004). Development of Constructivist Science Classrooms and Changes in Student Attitudes toward Science Learning. Science Education International, 15(2), 105-113.
Osborne, J. (2003). Attitudes towards science: a review of the literature and its implications, International Journal of Science Education, 25(9), 1049-1079.
Pallant, J. (2001). The SPSS survival manual: A step-by-step guide to data analysis using SPSS for Windows. St Leonards, NSW: Allen & Unwin
Piburn, M. D., & Baker, D.R. (1993). If I were the teacher…qualitative study of attitude toward science. Science Education 77, 393-406.
Pintrinch, P., & Schunk, D. (2002). Motivation in education. Merrill Prentice Hall.
Puacharearn, P. & Fisher, D. (2004). The effectiveness of cooperative learning integrated with constructivist teaching on improving learning environments in Thai secondary schoolscience classrooms. Curtin University of Technology, Australia.
Qian, G. (1995). The role of epistemological beliefs and motivational goals in ethnically diverse high school students' learning from science text. Paper presented at the annual meeting of the national reading conference, New Orleans, LA.
Rakıcı, N. (2004). Eight grade students’ perceptions of their science learning environment and teachers’ interpersonal behavior. Unpublished thesis submitted to the graduate school of Natural and Applied Sciences of the Middle East Technical University.
Riah, H. & Fraser, B. J. (1997). Chemistry learning environment in Brunei Darusssalam’s secondary schools. In D.L. Fisher & T. Rickards (Eds.), Science, Mathematics and Technology Education and National Development: Proceedings of the Vietnam conference (pp. 108-120). Hanoi; Vietnam.
Schibeci, R. A., & Riley, J. P. (1986). Influence of students’ background and perceptions on science attitudes and achievement. Journal of Research in Science Teaching, 23(3), 177-187.
Schommer, M. (1990). Effects of beliefs about the nature of knowledge on comprehension. Journal of Educational Psychology, 82, 498-504.
Schommer, M. (1993). Epistemological development and academic performance among secondary students. Journal of Educational Psychology, 85, 406-411.
Simpson, R. D., & Oliver, J. S. (1985). Attitude toward science and achievement motivation profiles of male and female science students in grades 6 through 10. Science Education, 69(4), 511-526.
Simpson, R. D., & Oliver J. S. (1990). A summary of major influences on attitude and achievemevt in science among adolescent students. Science Education, 74, 1-18.
Skaalvik, E. M. (1997). Self-enhancing and self-defeating ego orientation: Relations with task and avoidance orientation, achievement, selfperceptions, and anxiety. Journal of Educational Psychology, 89, 71–81.
Smist, J. M., Archambault, F. X., & Owens, S. V. (1994). Gender difference in attitude toward science. Paper presented at the annual meeting of the American Educational Research Association (New Orleans, LA, USA).
Sternberg, R. J. (1997). Thinking styles. New York: Cambridge University Press.
Tabachnick, B. G. & Field, L. S. (1996). Using multivariate statistics (3rd Ed.). New York: Harpercollins College Publishers.
Telli, S. Cakiroglu, J., & den Brok, P. (2006). Turkish secondary education students’ perceptions of their classroom learning environment and their attitude towards Biology. In D. L. Fisher & M. S. Khine(Eds.), Contemporary approaches to research on learning environments: world views (pp.517-542).
Tsai, C. C. (1998a). An analysis of Taiwanese eighth graders' science achievement, scientific epistemological beliefs and cognitive structure outcomes after learning basic atomic theory. International Journal of Science Education, 20, 413−425.
Tsai, C. C. (1998b). An analysis of scientific epistemological beliefs and learning orientations of Taiwanese eighth graders.Science Education, 82, 473−489.
Wahyudi, W. & David F. T. (2004). The status of science classroom learning environments in Indonesian lower secondary schools. Learning Environment Research, 7, 43-63.
Weinburgh, M. (1995). Gender differences in student attitudes toward science: a meta-analysis 18. of the literature from 1970 to 1991, Journal of Research in Science Teaching, 32, 387-398.
Wolfolk, A. (2004). Educational Psychology. Boston, MA, Allyn & Bacon.
Wolters, C. A., Yu, S. L., & Pintrich, P. R. (1996). The relation between goal orientation and students’ motivational beliefs and self-regulated learning. Learning and Individual Differences, 8, 211-238.
Zhang, L. (2000). University students’ learning approaches in three cultures: An investigation of Biggs’s 3P model. The Journal of Psychology, 134(1), 37-55.