(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 485-503 | DOI: 10.12973/ijese.2016.332a | Article Number: ijese.2016.016
Published Online: March 11, 2016
Abstract
Geologic time scale is a very important concept for understanding long-term earth system events such as climate change. This study examines forty-three 4th-8th grade Native American—particularly Ojibwe tribe—students’ understanding of relative ordering and absolute time of Earth’s significant geological and biological events. This study also examines how these students understand the time scale of human history in relation to the longer geologic time scale of the earth and of the Ojibwe’s unique history. The students participated in a 15-hour lesson unit focused on the topic of climate change in Earth history. The two major sources of data included: 1) students’ relative ordering and written descriptions of ten given Earth historical events and 2) student groups’ placing of nineteen events on an absolute time line. Students’ relative ordering of ten given events and student groups’ placing of nineteen events on an absolute time line were analyzed quantitatively by descriptive statistics, whereas students’ written descriptions of the relative ordering of the ten given events were analyzed qualitatively. The results show that the students understand Earth’s geological events as three distinctive zones: near the beginning of Earth history, relative recent events, and between these two categories. The results also show that many students interpret general historical events in human history like “starting agriculture” through the lens of their own history and cultural viewpoints. This study shows that younger children have a general knowledge of major events in Earth’s history, such as continental movement, but cannot organize an accurate chronological order of these events. This study also shows that indigenous students’ knowledge of their own cultural and historical events affects their understandings of human history.
Keywords: earth history, earth geologic time scale, native American students
References
Aikenhead, G. S. (1997). Toward a first nations cross-cultural science and technology curriculum. Science Education 81(2), 217-238.
Ault Jr., C. R. (1982). Time in geological explanations as perceived by elementary-school students. Journal of Geological Education 30(5), 304-309.
Barnhardt, R., & Kawagley, A. O. (2005). Indigenous knowledge systems and Alaska native ways of knowing. Anthropology & Education Quarterly 36(1), 8-23.
Ben-Zvi Assaraf, O., Eshach, H., Orion, N., & Alamour, Y. (2012). Cultural differences and students’ spontaneous models of the water cycle: A case study of Jewish and Bedouin children in Israel. Cultural Studies of Science Education 7(2), 451–477.
Bíró-Nagy, K. (2009). Re-conceptualized Time and Space in Contemporary Native American Discovery Narratives. Proceedings of the 2008 HAAS Conference. Special Issue of E-Journal of American Studies in Hungary, 5(2). Retrieved from http://americanaejournal.hu/vol5no2/biro-nagy
Brzuszek, R., Clary, R., Liu, Y., Toussaint, G., Kanon, E., Ellis, V. S., & Anggreeni, I. (2008). How big is big? The translation of the enormity of geologic time in an informal learning environment. Design Principles and Practices: An International Journal 2(4), 69-78.
Callahan, K. L. (2015) An Introduction to Ojibway Culture and History. Retrieved from http://www.tc.umn.edu/~call0031/ojibwa.html.
Clary, R. M., Brzuszek, R. F., & Wandersee, J. H. (2009). Students’ geocognition of deep time conceptualized in an informal educational setting. Journal of Geoscience Education 57(4), 275-285.
Climate Literacy Network (2009). Climate Literacy: The Essential Principles of Climate Sciences. Retrieved from http://cleanet.org/cln/index.html
Corbiere, A. O. (May 2000). Reconciling Epistemological Orientations: Toward a Holistic Nishnaabe (Ojibwe/Odawa/Potawatomi) Education. Paper presented at the Annual Meeting of the Canadian Indigenous and Native Studies.
Decker, T., Summers, G., & Barrow, L. (2007). The treatment of geological time and the history of life on Earth in high school biology textbooks. The American Biology Teacher 69(7), 401-405.
Dodick, J. (2007). Understanding evolutionary change within the framework of geological time. McGill Journal of Education42(2), 245-264.
Dodick, J., & Orion, N. (2003a). Cognitive factors affecting student understanding of geologic time. Journal of Research in Science Teaching 40(4), 415-442. doi:10.1002/tea.10083
Dodick, J., & Orion, N. (2003b). Measuring student understanding of geological time. Science Education, 87(5), 708-731.
Dodick, J., & Orion, N. (2006). Building an understanding of geological time: A cognitive synthesis of the “macro” and “micro” scales of time. In C. A. Manduca & D. W. Mogk (Eds.), Earth and mind: How geologists think and learn about the earth (pp. 77-93). Boulder, Colorado: Geological Society of America.
Earth Science Literacy Initiative. (2010). Earth science literacy principles: The big ideas and supporting concepts of earth science. Arlington, VA: National Science Foundation.
Johnston, Basil. (1976). Ojibway Heritage: The ceremonies, rituals, songs, dances, prayers and legends of the Ojibway.Toronto, Canada: McClelland and Stewart.
Libarkin, J. C., & Anderson, S. W. (2005). Assessment of learning in entry-level geoscience courses: Results from the Geoscience Concept Inventory. Journal of Geoscience Education, 53(4), 394–401.
Libarkin, J. C. & Kurdziel, J. P. (2004). Time is everything: Geologic time as a linchpin to a complete understanding of the earth. Paper presented at the 77th Annual meeting of the National Association of Research in Science Teaching, Vancouver, BC.
Libarkin, J., Kurdziel, J., & Anderson, S. (2007). College student conceptions of geological time and the disconnect between ordering and scale. Journal of Geoscience Education 55(5), 413-422.
Marques, L., & Thompson, D. (1997). Portuguese students’ understanding at ages 10-11 and 14-15 of the origin and nature of the earth and the development of life. Research in Science and Technological Education 15(1), 29-51.
Mbajiorgu, N. M., Ezechi, N. G., & Idoko, E. C. (2007). Addressing nonscientific presuppositions in genetics using a conceptual change strategy. Science Education 91(3), 419-438. doi:10.1002/sce.20202
McComas, W. F. (1990). How-to-do-it. How long is a long time?. American Biology Teacher, 52(3), 161-167.
Native Languages of Americas. (2015). Chippewa (Ojibway, Anishinaabe, Ojibwa). Retrieved from http://www.native-languages.org/chippewa.htm
NGSS Lead States. (2013). Next Generation Science Standards. Retrieved from http://www.nextgenscience.org/
Nelson‐Barber, S., & Estrin, E. T. (1995). Bringing Native American perspectives to mathematics and science teaching.Theory into Practice 34(3), 174-185.
Nieto-Obregon, J. (2005). Geologic time scales, maps and the chronoscalimeter: Journal of Geoscience Education 49(1), 25-29.
Noonan, L. C. & Good, R. G. (1999). Deep time: Middle school students’ ideas on the origins of earth and life on earth. Paper presented at the 72nd Annual Meeting of the National Association for Research in Science Teaching Annual Meeting, Boston, MA.
Ocean Literacy Network. (2013). Ocean Literacy: The Essential Principles of Ocean Sciences for Learners of All Ages. Retrieved from http://oceanliteracy.wp2.coexploration.org/brochure/
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., ... & Delmotte, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735), 429-436.
Snively, G., & Corsiglia, J. (2001). Discovering indigenous science: Implications for science education. Science Education85(1), 6-34.
Teed, R., & Slattery, W. (2011). Changes in geologic time understanding in a class for preservice teachers. Journal of Geoscience Education 59(3), 151-162.
Trend, R. (1998). An investigation into understanding of geological time among 10‐ and 11‐year‐old children. International Journal of Science Education 20(8), 973-988.
Trend, R. (2000). Conceptions of geological time among primary teacher trainees, with reference to their engagement with geoscience, history, and science. International Journal of Science Education 22(5), 539-555.
Trend, R. (2001a). Deep time framework: A preliminary study of U.K. primary teachers' conceptions of geological time and perceptions of geoscience. Journal of Research in Science Teaching 38(2), 191-221.
Trend, R. (2001b). An investigation into the understanding of geological time among 17-year-old students, with implications for the subject matter knowledge of future teachers. International Research in Geographical and Environmental Education 10(3), 298-321