(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2019)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2018)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2017)
(2016)
(2016)
Special Issue - (2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2016)
(2015)
(2015)
Special Issue - (2015)
(2015)
(2015)
(2015)
(2012)
(2012)
(2012)
Special Issue - (2012)
pp. 349-358 | DOI: 10.12973/ijese.2016.322a | Article Number: ijese.2016.008
Published Online: March 04, 2016
Abstract
The aim of this article is to disclose features of scientific explanation in teaching of chemistry in the environment of new information of school students’ developmental education. The leading approach to the study of this problem is the information and environmental approach that comprehensively address the problem of scientific explanation in the teaching of chemistry, to identify its characteristics and its role in the didactic system of developing training. In the article the concept of "informational-educational environment" and "personal information culture", identified the main function as the primary explanation of the procedure of scientific thinking in the teaching of chemistry. The features of scientific explanation in teaching chemistry in the new educational environment due to six types of relationships induction and deduction in explaining chemical phenomena, theories and laws. The choice of the ratio of induction and deduction affect the chemical nature of the studied object, the problem of knowing the object, the logical links between the structure of the object and the structure used to explain knowledge. It was found that the role of scientific explanation in the didactic system of developing education in the new information environment is the development of students forming their scientific outlook, logical thinking and culture of information activities.
Keywords: chemical education, scientific explanation, informational and educational environment.
References
Abasov, S. E. & Abdullayev, S. G. (2011, September 29) Modern information and communication technologies in education. Direct access: http://www.rsvpu.ru/filedirectory/3468/nito2011_1.pdf.
Andreev, V. I. (2015) Educational heuristics for creative self-development of multi-dimensional thinking and wisdom. Kazan Center of innovative technologies.
Babanskii, Y. K. (1988) Pedagogy. M .: Education. - 479 p.
Gabidullin, A. S. (1984) Teaching students the ability to explain the phenomena in the teaching of Science subjects in VI - VII classes: Dis. Cand. Of ped. Sciences; Kasane. state. ped. Inst .. - Kazan, 1984. - 207 p.
Gilmanshina, S. I., Sagitova, R. N., Kosmodemyanskaya, S. S., Khalikova, F. D., Shchaveleva, N. G., Valitova, G.F. (2015) Professional Thinking Formation Features of Prospective Natural Science Teachers Relying on the Competence-Based Approach. Review of European Studies, 7 (3), 341-349. http://www.ccsenet.org/journal/index.php/ res/issue/view/1277
Gilmanshina, S. I. & Gilmanshin, I. R. (2015) Building axiological competence of graduate students by means of project-based learning. IOP Conference Series: Materials Science and Engineering, 86 (1), 012029-12032. doi: 10.1088 / 1757-899X / 86/1/012 029
Gilmanshin, I. R., Ferenets, A. V., Azimov Yu. I., Galeeva A. I., Gilmanshina S. I. (2015) Innovative technologies of waste recycling with production of high performance products. IOP Conference Series: Materials Science and Engineering, 86 (1),12014-12016.
Ivshina, G. V. & Ismagilov K. K. (2010) Development of mathematical culture by means of information and communication technologies in the training of students in the humanities: a monograph. Kazan Center of innovative technologies. 164 p.
Merkulov, I. P. (1980) Hypothetical-deductive model and the development of scientific knowledge. M .: Nauka. 189 p.
Paravyan, N. A. (1975) Teaching methods hypothetical-deductive reasoning in the teaching of chemistry. Chemistry in university and at school: Digest of articles. Sat. articles, 2, 38-46.
Harvey, D. (1969) Explanation in geography. London.
Samigullina, G. S., Gilmanchina S. I., Gaisin I. T., Gilmanshin I. R., Akchurina I. R. (2015) Professional and Creative Development of Natural Geographic Course Teachers within the Process of Professional Retraining. Studies Education International, 8 (4). http://dx.doi.org/10.5539/ies.v8n4p159
Sochor, A. M. (1988) Explanation of the learning process: The elements of the didactic concept. M .: Pedagogika. 128 p.
Vilkeev, D. V. (1982) The ratio of induction and deduction in the structure and the process of learning the fundamentals of science as a didactic problem and its solutions: abstract of dissertation. Doctor of ped. sciences. M. 33 p.