Most Downloaded


Circular Migration and its Impacts in the Current Stage of Globalization

Magdalena Privarova and Andrej Privara

pp. 12909-12917  |   DOI:
Published Online: October 22, 2016
Article Views: 746  |  Article Download: 5595


In recent years, the concept of circular migration is increasingly getting into the center of attention among economic theorists as well as decision-makers in the field of international labor migration. In the current conditions of globalization, circular migration could solve some of the pitfalls encountered on the return migration. This paper outlines the genesis of the concept of circular migration and analyses the impacts of this phenomenon on the development of countries of origin. It also draws attention to the need of establishing mechanisms to ensure the circulating nature of migration movement. To do this, it is necessary to meet certain conditions. In this context, international cooperation on migration is a necessary condition for a “win-win-win” strategy as an important part of circular migration. The paper outlines the various forms of this cooperation.

Keywords: Circular migration, development of countries of origin, international cooperation


Ammassari, S. & Black, R. (2008). Harnessing the Potential of Migration and return to promote Development in Asia and the pacific..

Bovenkerk, F. (1974). The Sociology of return Migration: a Bibliographic Essay. Martinus Nijhoff, The Hague.

Cassarino, J.-P. (2004). Theorising Return Migration: a revisited conceptual approach to return migrants. EUI Working Papers No. 24.

Commisssion des Communautés européennes, Communication de la Commission au Parlement européen, au Conseil économique et social européen et au Comité des régions relative aux migrations circulaires et aux partenariats pour la mobilité entre l´Union européenne et les pays tiers. COM (2007) 248, Bruxelles, 16 mai 2007.

Dayton-Johnson, J. & Xenogiani, T. (2007). Immigration, développement et arbitrages entre politiques. Revue d´économie du développement, No 2.

GCIM (2005). Les migrations dans un monde interconnecté: nouvelles perspectives d´action. Rapport de la Commission mondiale sur les migrations internationales. Bruxelles.

GFMD: Rapport de la première réunion du Forum mondial sur la migration e tle développement. Bruylant, Bruxelles, 16 mai 2007.

Ghosh, B. (2009). Return Migration: Reshaping Policy Approaches. In Ghosh, B. (ed.), Return Migration: What Works?, GMF Immigration Paper Series No. 09.

Hugo, G. (1983). New Conceptual Approaches to Migration in the Context of Urbanization: A Discussion Based on Indonesian Experience. In Morrison, P.A. (ed.), Population Movements. Their Forms and Functions in Urbanization and Development, Ordina Editions, Liège.

Katseli, L., Lucas &  R.E.B., Xenogiani, T. (2006). Effects of migrations on sending countries: what do we know?, OECD Research programe on Economic and Social Effects of Migration on Sending Countries, Working Paper No. 250.

Newland, K., Agunias, D., & Terrazas, A. (2008). Learning by Doing: Experiences of Circular Migration.  Insight, Migration Policy Institute.

Newland, K. (2009). Circular Migration and Human Development. UNDP, Human Development Research Paper No. 42.

Poutvaara, P. (2005). Public education in an integrated Europe: Studying to migrate and teaching to stay? ZEI Working Paper B 03-2005, ZEI – Center for European Integration Studies, University of Bonn.

Ushakov, D. & ,Zhmykhova, N. (2015). International migrant flows and national migration policy: Quality correlation and scenarios of interdependence (the case of European Union). Actual Problems of Economics, # 8.

View Abstract References Full text PDF

Elementary School Students’ Attitude toward Science and Related Variables

Esme Hacieminoglu

pp. 35-52  |   DOI: 10.12973/ijese.2016.288a
Published Online: February 02, 2016
Article Views: 2020  |  Article Download: 3417


Worldwide studies have revealed an important issue in that an increasing percentage of students within the X – Y age group are not interested in science. Many students, especially females, have negative feelings and attitudes toward science, which discourages them from continuing with scientific inquiries. There are limited studies related to the factors predicting school students’ attitude toward science; therefore, the purpose of this study is to determine the relationships among the seventh grade elementary students’ attitudes toward science, their learning approaches, motivational goals, science achievement and students’ nature of science (NOS) views. The questionnaires for this study were administered online to 3,598 seventh grade students in different regions and cities of Turkey. The convenience sampling method was used in this study. The correlation results revealed the positive relationship between attitude toward science and the other variables. Multiple regression analysis indicated that while students’ meaningful learning, self-efficacy, and nature of science views have a positive contribution, rote learning contributed negatively to the model. The findings also showed that parents’ income and education level had a significant effect on students’ attitude toward science. 

Keywords: attitude toward science, motivational goal, self-efficacy, nature of science


Aldoplhe, F. S. G., Fraser, B. J., & Aldigre, J. M. (2003). A cross national  study of learning environment and attitudes amoung junior secondary science students in       Australia and Indonesia. Paper presented at the Third International Science, Mathematics and Technology Education Conference, East London, South Africa.

Aldridge, J. M., & Fraser, B. J. (2000). A cross-cultural study of classroom learning environments in Australia and Taiwan.Learning Environments Research, 3, 101–134.

Ali, M. M., Yager, R. E., Hacieminoglu, E., & Caliskan, İ. (2013). Changes in student attitudes regarding science when taught by teachers without experiences with a model professional development program. School Science and Mathematics, 113(3), 109-119.

Ames, C., & Archer, J. (1988). Achievement goals in the classroom: Student’s learning strategies and motivation processes.Journal of Educational Psychology, 80, 260-270.

Anderman, E. R., & Young A. J. (1994). Motivation and strategy use in science: Individual differences and classroom effects.Journal of Research in Science Teaching, 31, 811-831.

Archer, J., & McDonald, M. (1991). Gender roles and school subjects in adolescent girls. Educational Research, 33, 55-64.

Arısoy, N. (2007). Examining 8th grade students’ perception of learning environment of science classrooms inrelation to motivational beliefs and attitudes. Unpublished Theses in Middle East Technical University, Ankara, Turkey.

 Ausubel, D.P. (1963). The psychology of meaningful verbal learning. New York: Grune & Stratton.

Azizoğlu, N., & Çetin, G. (2009). The effect of learning style on middle schools students’ motivation and attitudes towards science, and the relationships among these variables. Kastamonu Education Journal, 17(1), 171-182.

Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall.

Bandura, A. (1993). Perceived self-efficacy in cognitive development and functioning. Educational Psychologist, 28, 117-148.

BouJaoude, S. B. (1992). The relationship between high school students' learning strategies and the change in their misunderstandings during a high school chemistry course. Journal of Research in Science Teaching, 29(7), 687-699.

Buehl, M. M. (2003). At the crossroads: Exploring the intersection of epistemological beliefs, motivation, and culture. Paper presented at the Annual Meeting of the American Educational Research Association, April, Chicago, IL.

Caliskan, İ. S. (2004). The effect of inquiry-based chemistry course on students' understanding of atom concept, learning approaches, motivation, self-efficacy, and epistemological beliefs. Unpuplished master thesis, The Middle East Technical University, Ankara.

Catsambis, S. (1995). Gender, race, ethnicity, and science education in the middle grades. Journal of Research in Science Teaching, 32(3), 243-257.

Cavallo, A. M. L., & Schafer, L. E. (1994). Relationships between student’s meaningful learning orientation and their understanding of genetic topics. Journal of Research in Science Teaching, 31(4), 393-418.

Cavallo, A. M. L. (1996).Meaningful learning reasoning ability and student’s understanding and problem of genetics topics.Journal of Research in Science Teaching38, 625-656. 

Cavallo, A. M. L., Rozman, M., Larabee, T., Ishikawa, C. (2001). Shifts in male and female students' learning, motivation, beliefs, and scientific understanding in inquiry-based college physics course. Paper presented at the annual conference of the National Association for Research in Science Teaching, St. Louis, MO.

Cavallo, A. M. L., Rozman, M., Blickenstaff, J., & Walker , N. (2003). Learning, reasoning, motivation, and epistemological beliefs. Journal of College Science Teaching, 33, 18-23.

Cavallo, A. M. L., Rozman, M., & Potter, W. H. (2004). Gender differences in learning constructs, shifts in learning constructs, and their relationship to course achievement in a structured inquiry, yearlong collage physic course for life science majors. School Science and Mathematics, 104(6), 288-301.

Cohen, J. W. (1988). Statistical power analysis for the behavioral sciences (2nd edition). Hilsdale, NJ: Lawrence Erlbaum Associates.

DeBacker, T. K., & Nelson, R. M.  (2000). Motivation to learn science: Differences related to gender, class type, and ability level. Journal of Educational Research, 93(4), 245-254.

den Brok, P., Fisher, D., & Rickards, T. (2004). Predicting Australian Students’ Perceptions Of Their Teacher Interpersonal Behavior. Paper presented at the annual meeting of the American Educational Research Association, San Diego.

Dhindsa, H. S. & Chung, G. (2003). Attitudes and achievement of Bruneian science students. Internalational Journal of Science Education, 25, 907-922.

Dweck, C. S. (1986). Motivational processes affecting learning. American Psychologist, 41, 1040-1048.

Edmondson, K.M. (1989). The influence of students’ conceptions of scientific knowledge and their orientations to learning on their choices of learning strategy in a college introductory level biology course. Unpublished doctoral dissertation, Cornell University, Ithaca, NY.

Edmondson, K.M., & Novak, D.N. (1993). The interplay of scientific epistemological views, learning strategies, and attitudes of college students. Journal of Research in Science Teaching30, 547-559.

Fraser, J. B. (1978). Development of a test of science-related attitudes, Science Education, 62(4), 509-515.

Freedman, M. P. (1997). Relationship among laboratory instruction, attitude toward science, and achievement in science knowledge. Journal of Research in Science Teaching, 34, 343-357.

Garcia, T., & Pintrich, P. R. (1992). Critical thinking and its relationship to motivation, learning strategies, and classroom experiences. Paper presented at the annual meeting of the American Psychological Association, Washington, DC.

Greenfield, T. A. (1996). Gender, etnicity, science achievement and attitudes. Journal of Research in Science Teaching, 33,901-933.

Hacieminoglu, E., Yilmaz-Tuzun, O., & Ertepinar, H. (2009). Investigating elementary students’ learning approach, motivational goals and achievement in science. Hacettepe University Journal of Education, 37, 72-83.

Hacieminoglu, E., Yilmaz-Tuzun, O., & Ertepinar, H. (2011). Middle school students’ attitude toward science in constructivist curriculum environment. International Journal on New Trends in Education and Their Implications, 2(3), 1-6.

Hacieminoglu, E., Yilmaz-Tuzun, O. & Ertepinar, E. (2012). Development and validation of nature of science instrument for elementary students. Education 3-13: International Journal of Primary, Elementary and Early Years Education, (online published). doi:10.1080/03004279.2012.671840.

Hykle, J. A. (1993, April). Template for gender-equitable science program. Paper presented at the annual meeting of the National Association for Research in Science Teaching. Atlanta, GA.

Jones, G.M., Howe, A., & Rua, M. J. (2000). Gender differences in students’ experiences, interests and attitude toward science and scientists. Science Education, 84, 180-192.

Kahle, J.B.; & Damnjanovic, A. (1997). How research help address gender equity. Research Matters- to the Science Teacher, 9703, 1-3. Available on line at

Kang, S., Scharmann, L. C., Noh, T., & Koh, H. (2005). The influence of students’ cognitive and motivational variables in respect of cognitive conflict and conceptual change. International Journal of Science Education, 27, 1037–1058.

Kaplan, A., & Midgley, C. (1997). The effect of achievement goals: Does level of perceived academic competence make a difference? Contemporary Educational Psychology, 22, 415-435.

Kizilgunes, B., Tekkaya, C., & Sungur, S. (2009). Modeling the relations among students’ epistemological beliefs, motivation, learning approach, and achievement. The Journal of Educational Research, 102(4), 243-255.

Klopfer, L. E. (1976). Astructure for the affective domain in the relation to science education. Science Education, 60, 299-312.

Koran, M. L., & Koran, J. J. (1984). Aptitude- treatment interaction research in science education. Journal of Research in Science Teaching 21(8), 793-808.

Lawrenz, F. P. (1976). Student perception of the classroom learning environment in biology, chemistry and physics courses.Journal of Research in Science Teaching, 13, 351– 353.

Lin, Y. G., & McKeachie, W. J. (1999). College student intrinsic and/or extrinsic motivation and learning. (ERIC Document Reproduction Service No. ED435954).

Middleton, M., & Midgley, C. (1997). Avoiding the demonstration of lack of ability: An underexplored aspect of goal orientation. Journal Educational Psychology89, 70-718.

Miller, L., Lietz, P., & Kotte, D. (2002). On decreasing gender differences and attitudinal changes. Factors influencing Australian and English pupils’ choice of a career in science. Psyhology, Evolution, and Gender, 4, 69- 92.

Murphy, P. K., & Alexander, P. (2000). A motivated exploration of motivation terminology. Contemporary Educational Psychology, 25, 3-53.

Newhouse, N. (1990). Implication of attitudes and behavior research for environmental conservation. The Journal of Environmental Education, 22(1), 26-32.

Novak, J. D., Ring, D. G., & Tamir, P. (1971). Interpretations of research findings in terms of Ausubel’s theory and implications for science Education. Science Education, 55(4), 483-526.

Novak, J. (1988). Learning science and the science of learning. Studies in science education, 15, 77-101.

Novak, J.,  Kerr, P., Donn, S., & Cobern, W. (1989).Epistemological issues in science education. Symposium presented at the Annual Conferance of the National Association for Research in Science Teaching, San Francisco, CA.

Oakes, J. (1990). Opportunities, achievement and choice: Woman and minority students in science and mathematics.Review of Research in Education, 16, 153-222.

Oh. P. S., & Yager, R. E. (2004). Development of Constructivist Science Classrooms and Changes in Student Attitudes toward Science Learning. Science Education International, 15(2), 105-113.

Osborne, J. (2003). Attitudes towards science: a review of the literature and its implications, International Journal of Science Education, 25(9), 1049-1079.

Pallant, J. (2001). The SPSS survival manual: A step-by-step guide to data analysis using SPSS for Windows. St Leonards, NSW: Allen & Unwin

Piburn, M. D., & Baker, D.R. (1993). If I were the teacher…qualitative study of attitude toward science. Science Education 77, 393-406.

Pintrinch, P., & Schunk, D. (2002). Motivation in education. Merrill Prentice Hall. 

Puacharearn, P. & Fisher, D. (2004). The effectiveness of cooperative learning integrated with constructivist teaching on improving learning environments in Thai secondary schoolscience classrooms. Curtin University of Technology, Australia.

Qian, G. (1995). The role of epistemological beliefs and motivational goals in ethnically diverse high school students' learning from science text. Paper presented at the annual meeting of the national reading conference, New Orleans, LA.

Rakıcı, N. (2004). Eight grade students’ perceptions of their science learning environment and teachers’ interpersonal behavior. Unpublished thesis submitted to the graduate school of Natural and Applied Sciences of the Middle East Technical University.

Riah, H. & Fraser, B. J. (1997). Chemistry learning environment in Brunei Darusssalam’s secondary schools. In D.L. Fisher & T. Rickards (Eds.), Science, Mathematics and Technology Education and National Development: Proceedings of the Vietnam conference (pp. 108-120). Hanoi; Vietnam.

Schibeci, R. A., & Riley, J. P. (1986). Influence of students’ background and perceptions on science attitudes and achievement. Journal of Research in Science Teaching, 23(3), 177-187.

Schommer, M. (1990). Effects of beliefs about the nature of knowledge on comprehension. Journal of Educational Psychology, 82, 498-504.

Schommer, M. (1993). Epistemological development and academic performance among secondary students. Journal of Educational Psychology, 85, 406-411.

Simpson, R. D., & Oliver, J. S. (1985). Attitude toward science and achievement motivation profiles of male and female science students in grades 6 through 10. Science Education, 69(4), 511-526.

Simpson, R. D., & Oliver J. S. (1990). A summary of major influences on attitude  and achievemevt in science among adolescent students. Science Education, 74, 1-18.

Skaalvik, E. M. (1997). Self-enhancing and self-defeating ego orientation: Relations with task and avoidance orientation, achievement, selfperceptions, and anxiety. Journal of Educational Psychology, 89, 71–81.

Smist, J. M., Archambault, F. X., & Owens, S. V. (1994). Gender difference in attitude toward science. Paper presented at the annual meeting of the American Educational Research Association (New Orleans, LA, USA).

Sternberg, R. J. (1997). Thinking styles. New York: Cambridge University Press.

Tabachnick, B. G. & Field, L. S. (1996). Using multivariate statistics (3rd Ed.). New York: Harpercollins College Publishers. 

Telli, S. Cakiroglu, J., & den Brok, P. (2006). Turkish secondary education students’ perceptions of their classroom learning environment and their attitude towards Biology. In D. L. Fisher & M. S. Khine(Eds.), Contemporary approaches to research on learning environments: world views (pp.517-542).

Tsai, C. C. (1998a). An analysis of Taiwanese eighth graders' science achievement, scientific epistemological beliefs and cognitive structure outcomes after learning basic atomic theory. International Journal of Science Education, 20, 413−425.

Tsai, C. C. (1998b). An analysis of scientific epistemological beliefs and learning orientations of Taiwanese eighth graders.Science Education, 82, 473−489.

Wahyudi, W. & David F. T. (2004). The status of science classroom learning environments in Indonesian lower secondary schools. Learning Environment Research, 7, 43-63.

Weinburgh, M. (1995). Gender differences in student attitudes toward science: a meta-analysis 18. of the literature from 1970 to 1991, Journal of Research in Science Teaching, 32, 387-398.

Wolfolk, A. (2004). Educational Psychology. Boston, MA, Allyn & Bacon.

Wolters, C. A., Yu, S. L., & Pintrich, P. R. (1996). The relation between goal orientation and students’ motivational beliefs and self-regulated learning. Learning and Individual Differences, 8, 211-238.

Zhang, L. (2000). University students’ learning approaches in three cultures: An investigation of Biggs’s 3P model. The Journal of Psychology, 134(1), 37-55. 

View Abstract References Full text PDF

The Climate Change Attitude Survey: Measuring Middle School Student Beliefs and Intentions to Enact Positive Environmental Change

Rhonda Christensen & Gerald Knezek

pp. 773-788  |   DOI: 10.12973/ijese.2015.276a
Published Online: September 13, 2015
Article Views: 795  |  Article Download: 1234


The Climate Change Attitude Survey is composed of 15 Likert-type attitudinal items selected to measure students’ beliefs and intentions toward the environment with a focus on climate change. This paper describes the development of the instrument and psychometric performance characteristics including reliability and validity. Data were gathered from 1576 middle school students from across the United States in 2014 to validate the instrument and establish the measurement properties of the instrument’s scales. Factor analysis revealed two stable constructs representing beliefs and intentions, which were reconfirmed through multidimensional scaling and hierarchical cluster analysis techniques. Internal consistency reliability was found to be respectable for the survey as a whole as well as the two separate scales. The Climate Change Attitude Survey was created to fill a void in the measurement of middle school students’ affective responses to the environment and climate change. Educators may find this survey useful for assessing pre- to post intervention attitude changes as well as for identifying differences in selected groups of students. Further development is targeted to include adding new constructs as well as testing the instrument with different population subgroups. 

Keywords: environment, middle school students, climate change, survey instrument


Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Juhl & J. Beckman (Eds.), Action control: From cognition to behavior. New York: Springer-Verlag.

Ajzen, I. (2002). Perceived behavioral control, self-efficacy, locus of control, and the theory of planned behavior. Journal of Applied Social Psychology, 32(4), 665-683.

Ajzen, I., & Fishbein, M. (1980). Understanding attitude and predicting social behavior. Englewood Cliffs, NJ: Prentice Hall.

Alwin, D.F., & Krosnick, J.A. (1991). Aging, cohorts, and the stability of sociopolitical orientations over the life span.American Journal of Sociology, 97(1), 169-195.

Archer, L., DeWitt, J., Osborne, J., Dillon, J., Willis, B., & Wong, B. (2012). Balancing acts elementary school girls’ negotiations of femininity, achievement, and science. Science Education, 96(6), 967–989.

Ballantyne, R., Connell, S., & Fien, J. (2006). Students as catalysts of environmental change: A framework researching intergenerational influence through environmental education. Environmental Education Research, 12(3/4), 413-427.

Benson, J., & Clark, F. (1982). A guide for instrument development and validation. American Journal of Occupational Therapy, 36(12), 789-800.

Bialo, E. R., & Sivin-Kachala, J. (1996). The effectiveness of technology in schools: A summary of recent research. School Library Media Quarterly, 25(1), 51-57.

Boeve-de-Paw, J., & Van Petegem, P. (2010). A cross-national perspective on youth environmental attitudes. The Environmentalist, 30(2), 133-144.

Bradley, J.C., Waliczek, R.M., & Zajicek, J.M. (1999). Relationship between environmental knowledge and environmental attitude of high school students. Journal of Environmental Education, 30(3), 17-21.

Carlsson, F., Kataria, M., Krupnick, A.J., Lampi, E., Lofgren, A., Qin, P., Chung, S., & Sterner, T. (2010). Paying for mitigation: a multiple country study. Discussion Paper. Washington, DC: Resources for the Future.

Champeau, R. (1997). Environmental education in Wisconsin: Are we walking the talk? Stevens Point, WI: Wisconsin Center for Environmental Education.

Chawla, L. (1999). Life paths into effective environmental action. Journal of Environmental Education, 31(1), 15-26.

Choi, S., Niyogi, D., Shepardson, D.P., & Charusombat, U. (2010). Do earth and environmental science textbooks promote middle and high school students’ conceptual development about climate change? Bulletin of the American Meteorological Society, 91(7), 889-898.

Christensen, R., & Knezek, G. (2002). Instruments for assessing the impact of technology in education. In L. Liu, L. Johnson, C. Maddux and N. Henderson (Eds.). Evaluation and Assessment in Educational Information Technology. New York, NY: The Haworth Press, Inc.

Christensen, R., & Knezek, G. (2004). Validating a Handheld Computing Self-Efficacy Scale. In R. Ferdig, C. Crawford, R. Carlsen, N. Davis, J. Price, R. Weber & D. Willis (Eds.), Proceedings of Society for Information Technology & Teacher Education International Conference 2004 (pp. 879-884). Chesapeake, VA: Association for the Advancement of Computing in Education (AACE).

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed). Hillsdale, NJ: Erlbaum.

Davidson, D., & Freudenburg, W. (1996). Gender and environmental risk concerns: A review of available research.Environment and Behavior, 28(3), 302-339.

DeVellis, R.F. (1991). Scale development: Theory and applications. Newbury Park, CA: Sage.

DeVellis, R.F. (2003). Scale development: Theory and applications, (2nd ed). Newbury Park, CA: Sage.

DeWaters, J., & Powers, S. (2013). Establishing measurement criteria for an energy literacy questionnaire. Journal of Environmental Education, 44(1), 38-55.

DeWaters, J., Qaqish, B., Graham, M., & Powers, S. (2013). Designing an energy literacy questionnaire for middle and high school youth. Journal of Environmental Education, 44(1), 56-78.

Dijkstra, E.M. & Goedhart, M.J. (2012). Development and validation of the ACSI: measuring students’ science attitudes, pro-environmental behaviour, climate change attitudes and knowledge. Environmental Education Research, 18(6), 733-749.

Dunn-Rankin, P., Knezek, G., Wallace, S., & Zhang, S. (2004). Scaling methods (2nd ed). Mahwah, NJ: Lawrence Erlbaum.

Europeans’ Attitudes toward climate change. (2009, July). Special Eurobarometer Report. European Commission.

Fortus, D. (2014). Attending to affect (editorial). Journal of Research in Science Teaching, 51(7), 821-835.

Gardos, V., & Dodd, D. (1995). An immediate response to environmentally disturbing news and the environmental attitudes of college students. Psychological Reports, 77(3), 1121-1122.

Haney, J.J., Czeriak, C.M., & Lumpe, A.T. (1996). Teacher beliefs and intentions regarding the implementation of science education reform strands. Journal of Research in Science Teaching, 33(9), 971-993.


Infographic: Attitudes toward climate change: Multiple country study. (2011). Resources for the Future.

Karpiak, C.P. & Baril, G.L. (2008). Moral reasoning and concern for the environment. Journal of Environmental Psychology, 28(3), 203-208. doi:10.1016/j.jenvp.2007.12.001.

Knafo, A., & Galansky, N. (2008). The influence of children on their parents’ values. Social and Personality Psychology Compass, 2(3), 1143-1161.

Knezek, G., & Christensen, R. (1996). Validating the computer attitude Questionnaire. Paper presented to the Southwest Educational Research Association annual conference, New Orleans, Louisiana, January, 1996.

Knezek, G., Christensen, R., Tyler-Wood, T., & Periathiruvadi, S. (2013). Impact of environmental power monitoring activities on middle school student perceptions of STEM. Science Education International, 21(1), 98-123.

Lawrenz, F. (1988). Prediction of student energy knowledge and attitudes. School Science and Mathematics, 88(7), 543-549.

Le Hebel, R., Montpied, P., & Fontanieu, V. (2014). What can influence students’ environmental attitudes? Results from a study of 15-year-old students in France. International Journal of Environmental & Science Education, 9(3), 329-345.

Leiserowitz, A., Maibach, E., Roser-Renouf, C., Feinberg, G., & Howe, P. (2013). Climate change in the American mind: Americans’ global warming beliefs and attitudes in April, 2013. Yale University and George Mason University. New Haven, CT: Yale Project on Climate Change Communication.

Leppanen, J.M., Haahla, A.E., Lensu, A.M., & Kuitunen, M.T. (2012). Parent-child similarity in environmental attitudes: A pairwise comparison. Journal of Environmental Education, 43(3), 162-176.

McMillan, E.E., Wright, T., & Beazley, K. (2004). Impact of a university-level environmental studies class on students’ values.Journal of Environmental Education, 35(3), 19-28.

Meinhold, J., & Malkus, A. (2005). Adolescent environmental behaviors. Can knowledge, attitudes, and self-efficacy make a difference? Environment and Behavior, 37(4), 511-532.

Metin, M. (2010). A study on development a general attitude scale about environmental issues for students in different grade levels. Asia-Pacific Forum on Science Learning and Teaching, 11(2), 1-19.

Milfont, T.L., & Duckitt, J. (2010). The environmental attitudes inventory: A valid and reliable measure to assess the structure of environmental attitudes. Journal of Environmental Psychology, 30(1), 80-94.

Mills, L., Wakefield, J., Najmi, A., Surface, D., Christensen, R. & Knezek, G. (2011). Validating the computer attitude questionnaire NSF ITEST (CAQ N/I). In M. Koehler & P. Mishra (Eds.), Proceedings of Society for Information Technology & Teacher Education International Conference 2011 (pp. 1572-1579). Chesapeake, VA: Association for the Advancement of Computing in Education (AACE).

Musser, L.M., & Malkus, A.J. (1994). The children’s attitudes toward the environment scale. Journal of Environmental Education, 94(25), 22-26.

Peterman, K., Kermish-Allen, R., Knezek, G., Christensen, R., & Tyler-Wood, T. (2015). Measuring student career interest within the context of technology-enhanced STEM projects: A cross-project comparison study based on the Career Interest Questionnaire(Unpublished manuscript submitted for publication).

Robertson, W.H., & Barbosa, A.C. (2015). Global climate change and the need for relevant curriculum. International Journal of LearningTeaching and Educational Research, 10(1), 35-44.

Sarkar, M. (2011). Secondary students’ environmental attitudes: The case of environmental education in Bangladesh. International Journal of Academic Research in Business and Social Sciences, 1(3), 106-116.

Schultz, P.W., Gouveia, V.V., Cameron, L.D., Tankha, G., Schmuck, P., & Franek, M. (2005). Values and their relationship to environmental concern and conservation behavior. Journal of Cross-Cultural Psychology, 36(4), 457-475.

Sears, D.O., & Funk, C.L. (1999). Evidence of the long-term persistence of adults’ political predispositions. Journal of Politics, 61(1), 1-28.

Sheppard, B.H., Hartwick, J., & Warshaw, P.R. (1988). The theory of reasoned action: A meta-analysis of past research with recommendations for modifications and future research. Journal of Consumer Research15(3), 325–343.

Sinatra, G.M., Kardash, C.M., Taasoobshirazi, G., &  Lombardi, D. (2012). Promoting attitude change and expressed willingness to take action toward climate change in college students. Instructional Science, 40(1), 1-17.

SPSS. (2010). IBM SPSS Statistics for Macintosh, Version 22.0. Armonk, NY: IBM Corp.

Tosunglu, C. (1993). A study on the dimension and determinants of environmental attitudes. PhD thesis, Middle East Technical University, Ankara.

Tyler-Wood, T., Knezek, G., & Christensen, R. (2010). Instruments for assessing interest in STEM content and careers.Journal of Technology and Teacher Education, 18(2), 341-363.

Weigel, R., & Weigel, R. (1978). Environmental concern: The development of a measure. Environment and Behavior, 10(1), 3-15.

Yilmaz, O., Boone, W.J., & Andersen, H.O. (2004). Views of elementary and middle school Turkish students toward environmental issues. International Journal of Science Education, 26(12), 1527-1546.

View Abstract References Full text PDF

Investigating High School Students’ Understanding of Chemical Equilibrium Concepts

Mageswary Karpudewan, David F. Treagust, Mauro Mocerino, Mihye Won & A. L. Chandrasegaran

pp. 845-863  |   DOI: 10.12973/ijese.2015.280a
Published Online: October 10, 2015
Article Views: 685  |  Article Download: 1023


This study investigated the year 12 students’ (N = 56) understanding of chemical equilibrium concepts after instruction using two conceptual tests, the Chemical Equilibrium Conceptual Test 1(CECT-1) consisting of nine two-tier multiple-choice items and the Chemical Equilibrium Conceptual Test 2(CECT-2) consisting of four structured questions. Both these tests were administered before and after the intervention. Students’ responses to the items in both the instruments indicated limited understanding of the various concepts related to chemical equilibrium. Less than 50% of the students provided correct responses to four of the nine items in the CECT-1. The total scores in the CECT-1 ranged from 0 to 8 with a mean score of 4.14 (out of a maximum of 9). In the CECT-2 the total scores ranged from 7 to 17 with a mean score of 11.0 out of a maximum score of 22. Almost half the number of students (44.6%) scored less than 50% of the total marks in the CECT-2; only 0% to 42.9% of students scored the maximum possible marks for each of the four items while achievement in all four items of the CECT-2 was below 50%. The findings will be valuable and assist teachers in planning their instruction on chemical equilibrium by taking into consideration students’ preconceptions about the topic. 

Keywords: chemical equilibrium, dynamic equilibrium, Le Chatelier’s Principle, reversible reactions


Banerjee, A.C. (1991). Misconceptions of students and teachers in chemical equilibrium. International Journal of Science Education, 13(4), 487-494.

Bergquist, W., & Heikkinen, H.  (1990). Student ideas regarding chemical equilibrium. Journal of Chemical Education, 67(12), 1000-1003.

Canagaratna, S. G. (2003).  Approaches to the treatment of equilibrium perturbations. Journal of Chemical Education,80(10), 1211-1219.

Cheung, D. (2009). The adverse effects of Le Chatelier’s principle on teacher understanding of chemical equilibrium.Journal of Chemical Education,, 86(4), 514-518.

Cheung, D., Ma H.-J, & Yang, J. (2009). Teachers’ misconceptions about the effects of addition of more reactants or products on chemical equilibrium. International Journal of Science & Mathematics Education, 7(6), 1111-1133.

Cohen, L., Manion, L., & Morrison,  K.  (2011). Research methods in education (7th edn.). Oxford, UK: Routledge.

Finley, F.N., Stewart, J., & Yarroch, W. L. (1982). Teachers’ perceptions of important and difficult science content. Science Education, 66(4), 531-538.

Hackling, M. W., & Garnett, P.J. (1985).  Misconceptions of chemical equilibrium. European Journal of Science Education,7(2), 205-214.

Khan, S. (2011). New pedagogies on teaching science with computer simulations. Journal of Science Education & Technology, 20(3), 215-232. 

Khatri, S. S. (2013). Qatar’s education system grapples with language challenges. Accessed 4 January 2014.

Kousathana, M., & Tsaparlis, G. (2002). Students’ errors in solving numerical chemical equilibrium problems. Chemistry Education Research and Practice, 3(1), 5-17.

Liu, H. C., Andre, T., & Greenbowe, T. (2008). The impact of learners’ prior knowledge on their use of chemistry computer simulations: A case study. Journal of Science Education & Technology, 17(5), 466-482.

Loh, Y. L., & Sivaneson, N. (2004). STPM Physical Chemistry (Volume 2). Kuala Lumpur, Malaysia: Penerbitan Pelangi Sdn. Bhd.

Malaysian Examinations Council.  (2003). Teaching courseware chemistry Lower 6. Kuala Lumpur, Malaysia: Author.

Malaysian Examinations Council. (2011). Malaysian Higher School Certificate Chemistry Syllabus 2012/2013. Kuala Lumpur, Malaysia: Author.

Nunally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd. edn.). New York: McGraw-Hill.

Özmen, H.  (2008). Determination of students’ alternative conceptions about chemical equilibrium: A review of research and the case of Turkey. Chemistry Education Research & Practice, 9(3), 225-223.

Pedrosa, M. A., & Dias, M. H. (2000). Chemistry textbook approaches to chemical equilibrium and student alternative conceptions. Chemistry Education Research & Practice, 1(2), 227-236.

Pintrich, P. R., Marx, R.W., & Boyle, R. A.  (1993). Beyond cold conceptual change: The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63(2), 167-199.

Piquette, J.S., & Heikkinen, H. W. (2005). Strategies reported used by instructors to address student alternative conceptions in chemical equilibrium. Journal of Research in Science Teaching, 42(10), 1112-1134.

Posner, G.J., Strike, K. A., Hewson, P. W., & Gertzog, W.A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.

Quílez, J. (2004). Changes in concentration and partial pressure in chemical equilibria: Students’ and teachers’ misunderstandings. Chemistry Education Research & Practice, 5(3), 281-300.

Quilez-Pardo, J., & Solaz-Portoles, J. (1995). Students’ and teachers’ misapplications of Le Chatelier’s Principle: Implications for the teaching of chemical equilibrium. Journal of Research in Science Teaching, 32(9), 939-957.

Russo, S., & Silver, M. E.  (2010). Introduction to chemistry (4th edn.). San Francisco, CA: Prentice Hall.

Tan, Y. T. (2012). Chemistry first term. Kuala Lumpur, Malaysia: Oxford Fajar Sdn. Bhd.

Thomas, P. L., & Schwenz, R. W. (1998).  College physical chemistry students’ conceptions of equilibrium and fundamental thermodynamics. Journal of Research in Science Teaching35(10), 1151-1160.

Torres, E. M. (2007). Effect of a perturbation on the chemical equilibrium: Comparison with Le Chatelier’s Principle. Journal of Chemical Education, 84(3), 516 -519.

Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science.International Journal of Science Education, 10(2), 159-169.

Treagust, D. F. (2006). Diagnostic assessment in science as a means to improving teaching, learning and retention. In UniServe science – symposium proceedings: Assessment in science teaching and learning (pp. 1–9). Sydney, NSW: Uniserve Science.

Tyson, L., Treagust, D. F., & Bucat, R. (1999). The complexity of teaching and learning chemical equilibrium. Journal of Chemical Education, 76(4), 554-558.

Van Driel, J. H., De Vos, W., Verloop, N., & Dekkers, H. (1998). Developing secondary students’ conceptions of chemical reactions: The introduction of chemical equilibrium. International Journal of Science Education, 20(4), 379-392.

Voska, K. W., & Heikinnen, H. W. (2000). Identification and analysis of student conceptions used to solve chemical equilibrium problems. Journal of Research in Science Teaching, 37(2), 160-176.

View Abstract References Full text PDF

Understanding Scientific Texts: From Structure to Process and General Culture

Ferhat Ensar & Muhammed Eyyüp Sallabaş

pp. 29-34  |   DOI: 10.12973/ijese.2016.287a
Published Online: January 01, 2016
Article Views: 1210  |  Article Download: 1016


In this study, the historical development of experimental research on learning processes from scientific texts has been introduced. Then a detailed analysis of the main contributions of cognitive science has been provided and the theoretical developments that are considered to have had a major role in the comprehension and understanding of scientific texts have been dwelled on. Our premise is to determine how development in understanding the basics of the comprehension of scientific text has been achieved and indicate the best way to continue research in the fields in which there has been less development. For this reason, types of theoretical developments required in order to make progress within the framework of learning processes from scientific texts have been included in this analysis. Thus, a contribution will be made in terms of better interpretation of the scientific texts used in environmental and science education. 

Keywords: Scientific text, expository text, comprehension, environmental education


Alpaslan, M. M., Yalvac, B., & Loving, C. C. (2015). Curriculum Reform Movements and Science Textbooks: A Retrospective Examination of 6th Grade Science Textbooks. Eurasia Journal of Mathematics, Science & Technology Education11(2), 207-216.

Atkinson, D. (1999). Scientific discourse in sociohistorical context: The philosophical transactions of the Royal Society of London, 1675–1975. Mahwah, NJ: Erlbaum.

Bakhtin, M. M. (1981). The dialogic imagination. (C. Emerson & M. Holquist, Trans.). Austin: University of Texas Press.

Bakhtin, M. M. (1986). Speech genres and other late essays. (V.W. McGee, Trans.). Austin: University of Texas Press.

Berman, Ruth A. & Nir-sagiv, B. (2007). Comparing narrative and expository text construction across adolescence: A developmental paradox. Discourse Processes, 43 (2), 79-120.

Britton, B.K. & Black, J. B. (1985). Understanding expository text: From structure to process and world knowledge. In B.K. Britton & J.B. Black (Eds.). Understanding expository text: A theoretical and practical handbook for analyzing explanatory text. Hillsdale, NJ: Erlbaum.

Britton, B. K., Glynn, S. M., Meyer, B. J. F. & Penland, M. J. (1982). Effects of text structure on use of cognitive capacity during reading. Journal of Educational Psychology, 74, 51-61.

Engert, K., & Krey, B. (2013). Reading Writing/Writing Reading on Epistemic Work with Scientific Texts. Zeitschrift Fur Soziologie42(5), 366-384

Eren, M., Bulut, M., & Bulut, N. (2015). A content analysis study about the usage of history of mathematics in textbooks in Turkey. Eurasia Journal of Mathematics, Science & Technology Education, 11(1), 53-62.

Gajria, M., Jitendra, A. K., Sood, S. & Sacks, G. (2007). Improving Comprehension of Expository Text in Students With LD: A Research Synthesis. Journal of Learning Disabilities, 40, (3), 210–225.

Gates, V. P., Duke N. K. & Martineau, J A. (2007). Learning to read and write genre-specific text: Roles of authentic experience and explicit teaching. Reading Research Quarterly, 42 (1), 8-45.

Goodwin, C. (1995). Seeing in depth. Social Studies of Science, 25, 237–274

Hahn, P., Dullweber, F., Unglaub, F., & Spies, C. K. (2014). Text mining, a method for computer-assisted analysis of scientific texts, demonstrated by an analysis of author networks. Handchirurgie Mikrochirurgie Plastische Chirurgie. 46(3), 186-191.

Hasni, A., & Potvin, P. (2015). Student’s Interest in Science and Technology and its Relationships with Teaching Methods, Family Context and Self-Efficacy. International Journal of Environmental & Science Education10(3), 337-366.

Kazempour, M. (2014). I Can't Teach Science! A Case Study of an Elementary Pre-Service Teacher's Intersection of Science Experiences, Beliefs, Attitude, and Self-Efficacy. International Journal of Environmental and Science Education9(1), 77-96.

Kelly, G. J. & Bazerman, C. (2003). How students argue scientific claims: A rhetorical semantic analysis. Applied Linguistics, 24 (1), 28-55.

 Kelly, G. J., & Green, J. (1998). The social nature of knowing: Toward a sociocultural perspective on conceptual change and knowledge construction. In B. Guzzetti, & C. Hynd (Eds.), Perspectives on conceptual change: Multiple ways to understand knowing and learning in a complex world (pp. 145–181). Mahwah, NJ: Erlbaum.

Keys, C. W. (1999). Revitalizing instruction in scientific genres: Connecting knowledge production with writing to learn in science. Science Education, 83, 115–130

Linderholm, T., Everson, M. G., van den Broek P., Mischinski, M., Crittenden, A., & Samuels, J. (2000). Effects of causal text revisions on more and less-skilled readers’ comprehension of easy and difficult texts. Cognition and Instruction, 18(4), 525-556.

McNamara, D. S. Kintsch, E, Songer, N. B. & Kintsch, W. (1996). Are good text always better? Interactions of text coherence, background knowledge, and levels of understanding in learning from text. Cognition and Instruction, 14.

Meyer, B. J. F., & Rice, G. E. (1984). The structure of text. In P. D. Pearson, R. Barr, M. L. Kamil, & P. Mosenthal (Eds.),Handbook of reading research (Vol. 1, pp. 319-351). White Plains, NY: Longman.

Morgado, J., Otero, J., Vaz-Rebelo, P., Sanjosé, V., & Caldeira, H. (2014). Detection of explanation obstacles in scientific texts: the effect of an understanding task vs. an experiment task. Educational Studies40(2), 164-173.

Oliveira, A. W. (2015). Reading Engagement in Science: Elementary Students’ Read-Aloud Experiences. International Journal of Environmental & Science Education10(3), 429-451.

Pearson, P. D., & Fielding, L. (1991). Comprehension instruction. In R. Barr, M. L. Kamil, P. Mosenthal, & P. D. Pearson (Eds.),Handbook of reading research (Vol. 2, pp. 815-860). White Plains, NY: Longman.

Scruggs, T. E., & Mastropieri, M. A. (1990). Current approaches to science education: Implications for mainstream education of students with disabilities. Remedial and Special Education, 14, 15-24.

Seidenberg, P. L. (1989). Relating text-processing research to reading and writing instruction for learning disabled students.Learning Disabilities Focus, 5 (1), 4-12.

Sjøberg, S. (2015). PISA and Global Educational Governance–A Critique of the Project, its Uses and Implications. Eurasia Journal of Mathematics, Science & Technology Education11(1), 111-127.

Vygotsky, L. S. (1962). Thought and language. (A. Kozalin, Trans.). Cambridge, MA: MIT Press. (Original work published in 1934).

Weaver, C. A. & Kintsch, W. (1991). Expository text. In R. Barr, M. L. Kamil, P. Mosenthal, & P. D. Pearson (Eds.), Handbook of reading research (Vol. 2, pp. 230-244). White Plains, NY: Longman.

View Abstract References Full text PDF

Teaching Listening Comprehension: Bottom-Up Approach

Anvar N. Khuziakhmetov & Galina V. Porchesku

pp. 1989-2001  |   DOI: 10.12973/ijese.2016.572a
Published Online: June 14, 2016
Article Views: 225  |  Article Download: 1002


Improving listening comprehension skills is one of the urgent contemporary educational problems in the field of second language acquisition. Understanding how L2 listening comprehension works can have a serious influence on language pedagogy. The aim of the paper is to discuss the practical and methodological value of the notion of the perception base of the language. It also highlights the importance of structural features and frequency of linguistic units in helping to determine teaching priorities in English language teaching, specifically, when training listening skills. The leading approaches to the problem of the paper are the psycholinguistic and statistical ones which help to identify practical teaching principles. The paper illustrates these approaches with the findings on the perceptually relevant features and frequency of the English words and sentences and their linguistic features. The findings are discussed in terms of their application in developing bottom-up listening skills and tested in a listening comprehension experiment. The materials of this article may be of use to those who are interested in problems of speech perception and improving the existing listening comprehension teaching techniques

Keywords: Listening comprehension; speech perception; bottom-up strategies; linguistic features; perception base; frequency


Abramov, V. Y. (2004). Mono- and bilingual mechanisms of oral speech perception: PhD Thesis. Samara: Povolzhskaya State Academy of Telecommunication and Informatics, 274 p.

Aponte-de-Hanna C. (2012, September 15) Listening strategies in the L2 classroom. College Quarterly. 15 (1).  Direct access:

Baiburova, O. V. (2008). The mechanism of perception of words of different syllable type: PhD Thesis. Perm: Perm State Pedagogical University. 220 p.

Biber, D., Johanson, S., Leech, G., Conrad, S., Finegan, E. (2004). Longman Grammar of Spoken and Written English. Harlow:  Longman. 204 p.

Chugaeva, T. N. (2007). Perception aspect of the sound system of the English language. Yekaterinburg-Perm: PNTs UrO RAN. 246 p.

Chugaeva, T. N. (2009). The sound system of the English language in the perception aspect: PhD Thesis. St. Petersburg: St. Petersburg State University. 145 p.

Chugaeva, T. N., Thacker. A., Baiburova, O. V., Oshchepkova, O. V., Novikov, A. V. (2005). English listening comprehension manual. Perm: Perm University. 152 p.

Delvaux, V., Huet, K., Calomme, M., Piccaluga, M., Harmegnies, B. (2015, November 17) Teaching listening in L2: A successful training method using the word spotting task. Direct access: ICPhS2015/Papers/ICPHS0784.pdf

Dzhaparidze, Z. N. (1985). Perception phonetics: the main points. Tbilisi: Metsniereba, 118.

Fedotova, N. L. (2015). Methods of Russian as a second language teaching.  Direct access:

Frumkina, R.M. (1990). Experimental methods in Linguistics. Moscow: Soviet Entsyklodedia. 682 p.

Gilman, R. A. & Moody, L. M. (1984). What Practitioners say about Listening. Foreign Language Annals, 17, 31-34.

Govorun, S. V. (2015). Strategies of educational listening. Philology Sciences, 5 (47), 76-81.

Graham, S. (2006). Listening comprehension. System, 34, 165–182.

Grigoryeva, E. V., Leyfa, I. I., Yatsevich, L. P., Demyanenko, M. A., Makovey, N. V., Pavlushkina, T. V. & Masalimova, A. R. (2015). Designing technology of English language teaching content based on international component. Review of European Studies, 7 (1), 123-129.

Gutman, E. V., Masalimova, A. R., Shaidullina, A. R., Nizamieva, A. M. & Mukhamadieva, A. H. (2014). Foreign language discipline integrative potential in the students’ research competence development. American Journal of Applied Sciences, 11, 1099-1103.

Howard, J. & Major, J. (2004, October 9) Guidelines for designing effective English language teaching materials. Seoul, South Korea. Direct access:

Hulstijn, J.H. (2003). Connectionist models of language processing and the training of listening skills with the aid of multimedia software. Computer Assisted Language Learning, 16 (5), 413-425.

Hunsaker, R. A. (1990). Understanding and developing the skills of oral communication. Englewood, Morton Press. 184 p.

Karimvand, P. N. (2011). Psycholinguistic Perspectives on Comprehension in Second Language Acquisition. Journal of Language Teaching and Research, 2 (6), 1268-1273.

Kasevich, V. B. (2010). Speech perception. Philosophy of the language. Perm: Perm Scientific Centre URo RAN, 28-32.

Khaleeva, I. I., (1989). The theoretical basis of teaching foreign language comprehension. Moscow: Vysshaya Shkola. 238 p.

Krause, M. (2002). The dynamics of the mechanism of the word identification under different conditions of foreign language learning. Minich: Verlag Otto Sagner. 173 p.

Leech, G. (2001, April 23) The Role of Frequency in ELT.  Direct access:

Lopatina, O. V., Borisov, A. M., Leyfa, I. I., Galimzyanova, I. I., Yatsevich, L. P., Demyanenko, M.  A. & Masalimova, A.R. (2015). Role of foreign language teacher shaping students’ research skills. Asian Social Science, 11 (4), 135-140.

Masalimova, A. R., Porchesku, G. V. & Liakhnovitch, T. L. (2016). Linguistic Foundation of Foreign Language Listening Comprehension. International Electronic Journal of Mathematics Education, 11(1), 123-131.

Mendelsohn, D. (1994). Learning to listen: a strategy based approach for the second language learner.  California: Dominie Press. 149 p.

Mendelsohn, D. (1998). Teaching Listening. Annual Review of Applied Linguistics, 18, 81-101.

Miller, G. A. & Selfridge, J. A. (1950). Verbal context and the recall of meaningful material. American Journal of Psychology, 63, 176-175.

Porchesku, G. V. (2013). The structure of the English sentence in the perception aspect: PhD Thesis. Nizhny Novgorod, Kirov: VSHU. 195 p.

Richards, J. C. (2008). Teaching Listening and Speaking. Cambridge University Press. 337 p.

Sekerina, I. A. (2006). Method of event-related brain potentials in experimental psycholinguistics. Topics in the study of language, 3, 22-45.

Shcherba, L. V. (1974). Teaching foreign languages at secondary school: general problems of teaching methods. Edited by E. V. Rakhmanova. Moscow. Vysshaya Shkola. 111 p.

Shtern, A. S. (1992). Perception aspect of speech activity: experimental research. St. Petersburg: St.Petersburg University. 236 p.

Slater, J., Kraus, N. (2015). The role of rhythm in perceiving speech in noise. Cognitive Processing, 17(1), 210 p.

Tsarevskaya, I. V. & Litovchenko, L. N. (2015, May 22) To the question of listening in learning a foreign language in non-linguistic university. Retrieved from

Vandergrift, L. (2009, October, 17) Listening: Theory and practice in modern foreign language competence. Retrieved from

Vandergrift, L. & Goh, C. M. (2012). Teaching and learning second language listening: metacognition in action. New York: Routledge. 315 p.

Ventsov, A. V. & Kasevich, V. B. (1994). Problem of speech perception. St. Petersburg: St. Petersburg university. 232 p.

Zalevskaya, A. A. (1988). Text comprehension: psycholinguistic approach. Kaliningrad: Kalin. 95 p.

Zinder, L. R. & Shtern, A. S. (1972). Factors which influence the perception of a word. Proceedings of IV Symposium on Psycholinguistics and Communication Theory, 1, 149-159.

View Abstract References Full text PDF

The Problem of Reading and Reading Culture Improvement of Students-Bachelors of Elementary Education in Modern High Institution

Lera A. Kamalova & Natal’ya D. Koletvinova

pp. 473-484  |   DOI: 10.12973/ijese.2016.318a
Published Online: April 11, 2016
Article Views: 275  |  Article Download: 714


This article is aimed to study the problems of reading and improve reading culture of students-bachelors of elementary education in modern high institutions and development of the most effective methods and techniques for improving of reading culture of students in the study of Humanities disciplines. The leading method to the study of this problem is a pedagogical experiment (ascertainment, formation and control stages of experiment), and the method of expert estimations, statistical processing of quantitative research results. The article identifies the most effective methodological techniques of reading culture improvement of undergraduate students, future specialists of elementary education in their learning process at the University; We offered the methodology of reading culture improvement for the undergraduate students of "Elementary education" profile, providing thoughtful skill of reading of the works of various styles and genre, creative reading skill, formation of reading competence of students.

Keywords: elementary education, reading skill, reading culture, personal and professional development, creative reading, means of communication


Adler, M. (2014). How to read books. A guide to reading the great works. The publishing house Mann, Ivanov and Ferber, 344.

Akimova, A. G. (2014). The culture of reading of youth: myths and reality. Electronic source:

Approximate program of academic subjects. (2010). Moscow, Education, 400.

Chudinova, V. P. (2008). Reading of children as a national value. Electronic source:

Granick, G. G., Bondarenko, S. M. & Kontsevaya, L. A. (2007). When the book teaches, 256.

Kamalova, L. A. & Ul’yanitskaya, T. V. (2014). The study of the pedagogical values of the future elementary school teachers,Life Science Journal, 11(10s), 522-526.

Kamalova, L. A. (2015). Formation of Professional Competences of “Primary Education” Profile Students While the Studying Process at the University, Review of European Studies, 7(1), 94-100.

Khuziakhmetov, A. N., Shafikova, G. R. & Kapranova, V. A. (2015). Conditions of Educational Environment for the Development of Teenagers’ Moral Relations. International Journal of Environmental and Science Education, 10 (4), 515-521.

Kozyrev, V. A. & Chernyak, V. D. (2007). The reading range and Russian language ability of the    student. Bulletin of the Herzen University, 47.

Likhachev, D. S. (2006). Writing about the good and the beautiful. SPb., Logos, 234.

Mc Luhan, M. (2005). The Gutenberg Galaxy. The development of man print, 45-46.

Novik, N. N. & Podgórecki, J. A. (2015). Model of Developing Communication Skills among Adolescents with Behavioral Problems. International Journal of Environmental and Science Education, 10 (4), 579-587.

Pennac, D. (2015). Essay as a novel. Moscow, Scooter, 196.

Ribakova, L. A., Parfilova, G. G., Karimova, L. Sh. & Karimova, R. B. (2015). Evolution of Communicative Competence in Adolescents Growing Up in Orphanages. International Journal of Environmental and Science Education, 10 (4), 589-594.

Sadykova, A. G., Yashina, M. E. & Sharafieva, A. D. (2014). Citation as a stimulus to boost students’ communication skills at the English lessons. English Language Teaching, 7 (12), 12-25.

Sagitova, R. R. (2014). Training students to be autonomous learners. International Journal of Humanities Education, 12 (1),27-34.

Svetlovskaya, N. N. & Peach-ool, T. S. (2007). How to help children who don't want to learn to read.  Publishing House Archi: 54.

The national programme for support and development of reading. (2007). Library, 10-28.

Tikhomirova, I. I.(2008). About the development of creative reading in Russia: a case history. School library, 68-76.

Valeev, A. A. & Baranova, A. R. (2013). The development of the future engineers' capacity for creative self-realization. 16th International Conference on Interactive Collaborative Learning, ICL, 2013 (pp.436-437). Kazan, Russian Federation: Kazan National Research Technological University.

Valeeva, L. A. & Valeeva, R. A. (2013). Development of future engineers' critical thinking in foreign language teaching. 16th International Conference on Interactive Collaborative Learning, ICL2013 (рр. 438-439). Kazan, Russian Federation: Kazan National Research Technological University.

Volkova, E. A. (2012).Transformation reading student youth. Abstract of the dissertation on competition of degree of candidate of pedagogical Sciences: 28.11.2012.  Krasnodar, 35.

Vorontsov, A. V. (2009). Reading as a socio-economic problem. Society. Environment.  Development, 28.

View Abstract References Full text PDF

Challenges of International Students’ Adjustment to a Higher Education Institution

Tatiana A. Baklashova & Andrey V. Kazakov

pp. 1821-1832  |   DOI: 10.12973/ijese.2016.557a
Published Online: June 12, 2016
Article Views: 301  |  Article Download: 707


The relevance of this work is determined by the real problems of foreign students’ adaptation to the educational environment of Russian high school. International students face certain problems, complicating adaptation to a new lifestyle, to the educational environment of the Russian high school, to a completely new social and cultural environment. Every year more and more foreign students come to Russia to get higher education, and every foreign student goes through an objective process of adaptation to college life. This article aims to develop recommendations, basic principles for an educational institution that provides educational services to foreign citizens. The leading method to the study of this problem is a qualitative method of case-study, which allows to focus on practical knowledge about real everyday situations, faced by foreign students in Russia.  The case-study method provides an opportunity to pay close attention to the impact of social, cultural and academic factors on their adaptation. The article revealed that international students often face a series of transitional difficulties immediately after arriving to study in Russian universities. The problems are cataloged according to academic, social and cultural aspects. The article states that in order to overcome these problems, the students use resources provided mainly by the university. On the other hand, it is found out that these problems motivate foreign students to develop strategies to meet emerging challenges. The data obtained can be used in the practice of the university administration, faculty and staff to timely detect and eliminate academic, social and cultural challenges faced by international students at the beginning of their studies in Russia. Attention to these issues will provide more adequate support for foreign students.

Keywords: International students, higher education, academic challenges, social isolation, cultural adjustment


Bondareva, S. V. & Bondarev, N. A. (2014) Gender differences in manifestations of anxiety among foreign students. Personality, family and society: questions of pedagogy and psychology, 38, 159-164.

Celleja, D. (2000). The world at your door. Canadian Business, 73(20), 108-111.

Fomina, T. K. (2004) Foreign students in Russian medical high schools: internalization of professional value. PhD Thesis. Volgograd, Volgograd State Medical university, 289.

Gelbras, Q. (2002, May 7) Has Russia Chinese future? Komsomolskaya Pravda, 8 p.

Hammer, M. R., Bennett, M. J., Wiseman, R. (2003) The intercultural development inventory: a measure of intercultural sensitivity. International Journal of Intercultural Relations, 27, 421-443.

Kamara, I. (2012) Stress and its influence on the process of African students’ adaptation in Russia. Society: sociology, psychology, pedagogy, 2, 66-70.

Knyazeva, E. M. & Kurina, L. N. (2010) Features of chemistry teaching to foreign students. Modern problems of science and education, 6, 39-43.

Kosheleva, E. Y. (2015) Effects of stress factors on the adaptation to the academic process in the Russian high school students of foreign and Russian. Almanac of modern science and education, 4, 95-98.

Kravets, J. L. (2013) Social adaptation of foreign students in the educational environment. Psychopedagogy in law enforcement, 3, 31-35.

Malykhin, M. (2015, February, 19) A student – a step to rating. Vedomosti, 8 p.

Opendoors. (2015, April 17) Report on international educational exchange. Direct access: 

Russell, J., Rosenthal, D., Thomson, G. (2010) The international student experience: three styles of adaptation. Higher Education, (60) 2, 235-249.

Tatarko, A. N. (2009) Migrants in Moscow: threats real and imaginary. Migration processes and adaptation issues, 4, 73-97.

View Abstract References Full text PDF

How Do Turkish Middle School Science Coursebooks Present the Science Process Skills?

Oktay Aslan

pp. 829-843  |   DOI: 10.12973/ijese.2015.279a
Published Online: October 10, 2015
Article Views: 1002  |  Article Download: 701


An important objective in science education is the acquisition of science process skills (SPS) by the students. Therefore, science coursebooks, among the main resources of elementary science curricula, are to convey accurate SPS. This study is a qualitative study based on the content analysis of the science coursebooks used at middle schools. In the present study, 653 science activities presented in 10 Turkish science coursebooks used for teaching science at the 5th to 8th grade were analyzed. The findings show that activities in the coursebooks are in the planning and starting skill level of SPS. The overall investigation of the science coursebooks revealed that the SPS recommended in science curriculums are not reflected in the science coursebooks used in middle schools. Skills like variables determination and controlling-changing variables are either included at the lowest rates or not at all in the science coursebooks employed. In addition, the representation of each skill varies according to the grade, publisher, and unit. 

Keywords: science process skills, science coursebooks, science activities, middle school


Ağgül Yalçın, F. (2011). İlköğretim 8. sınıf  fen ve teknoloji öğretmen kılavuzu “maddenin yapısı ve özellikleri” ünitesinin bilimsel süreç becerileri açısından değerlendirilmesi. İlköğretim Online, 10(1), 378-388.

Aktamış, H., & Ergin, Ö. (2008). The Effect of scientific process skills education on students’ scientific creativity, science attitudes and academic achievements. Asia-Pacific Forum on Science Learning and Teaching, 9(1), 1-21.

American Association for the Advancement of Science (AAAS) (1993). Benchmarks for science literacy. New York: Oxford University Press.

Anderson, R. D. (2002). Reforming science teaching: what research says about inquiry. Journal of Science Teacher Education, 13(1), 1-12.

Ango, M. L. (2002). Mastery of science process skills and their effective use in the teaching of science: An educology of science education in the Nigerian context. International Journal of Educology, 16(1), 11–30.

Aslan Efe, H., Efe, R., & Yücel, S. (2012). Ortaöğretim biyoloji ders kitaplarında yer alan etkinliklerin bilimsel süreç becerileri açısından analizi. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 12(24), 1-20.

Aziz, M. S., & Zain, A. N. Md. (2010). The inclusion of science process skills in Yemeni secondary school physics textbooks.European Journal of Physics Education, 1(1), 44-50.

Bağcı Kılıç, G. (2003). Üçüncü uluslararası matematik ve fen araştırması (TIMSS): Fen öğretimi, bilimsel araştırma ve bilimin doğası. İlköğretim Online, 2(1), 42-51.

Bağcı Kılıç, G., Haymana, F., & Bozyılmaz, B. (2008). İlköğretim fen ve teknoloji dersi öğretim programının bilim okuryazarlığı ve bilimsel süreç becerileri açısından analizi. Eğitim ve Bilim, 33(150), 52-63.

Beaumont-Walters, Y., & Soyibo, K. (2001) An analysis of high school students' performance on five integrated science process skills. Research in Science & Technological Education, 19(2), 133-145.

Bowen, G. M., & Roth, W-M. (1999). "Do-able" questions, covariation and graphical representation: do we adequately prepare preservice science teachers to teach inquiry? Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Boston.

Bowen, G. M., & Roth, W.-M. (2005). Data and graph interpretation practices among preservice science teachers. Journal of Research in Science Teaching, 42(10), 1063-1088.

Brotherton, P. N., & Preece, P. F. W. (1995). Science process skills: their nature and interrelationships. Research in Science & Technological Education, 13(1), 5-11.

Bybee, R. W., & DeBoer, C. E. (1993). Research on goals for the science curriculum. In D. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 357-387). New York: National Science Teachers Association.

Chabalengula, V. M., Mumba, F., & Mbewe, S. (2012). How pre-service teachers’ understand and perform science process skills. Eurasia Journal of Mathematics, Science & Technology Education,8(3), 167-176.

Chiappetta, E. L., & Fillman, D. A. (2007). Analysis of five high school biology textbooks used in the united states for inclusion of the nature of science. International Journal of Science Education, 29(15), 1847-1868.

Colvill, M., & Pattie, I. (2002). Science skills: the building blocks for scientific literacy. InvestigatingAustralian Primary & Junior Science, 18(3), 20-22.

Dökme, İ. (2005). Milli eğitim bakanlığı (MEB) ilköğretim 6. sınıf fen bilgisi ders kitabının bilimsel süreç becerileri yönünden değerlendirilmesi. İlköğretim Online, 4(1), 7-17.

Germann, J. P, Aram, R., & Burke, G. (1996). Identifiying patterns and relationships among the responses of seventh grade students to the science process skills of designing experiments. Journal of Research in Science Teaching, 33 (1), 79-99.

Güneş, M. H., Çeliker, D., & Gökalp, M. (2009). İlköğretim I. Kademedeki Yeni Fen ve Teknoloji Ders Kitapları Konusunda Sınıf Öğretmenlerinin Görüşleri. Ç.Ü. Sosyal Bilimler Enstitüsü Dergisi, 17 (3), 193-210.

Harlen, W. (1999). Purposes and procedures for assessing science process skills. Assessment in education. Principles, Policy & Practice, 6 (1), 129-146.

Hazır, A., & Türkmen, L. (2008). İlköğretim 5. sınıf öğrencilerinin bilimsel süreç beceri düzeyleri. Selçuk Üniversitesi Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 26, 81-96.

Huppert, J., Lomask, S. M., & Lazarowitz, R. (2002). Computer simulations in the high school: Students' cognitive stages, science process skills and academic achievement in microbiology. International Journal of Science Education, 24(8), 803-821.

Kahveci, A. (2010). Quantitative analysis of science and chemistry textbooks for indicators of

reform: a complementary perspective. International Journal of Science Education, 32(11), 1495-1519.

Koray, Ö., Bahadır, H., & Köksal, M. S. (2007). Bilimsel süreç becerilerinin 10. ve 11. sınıf kimya ders kitapları ve kimya ders müfredatında temsil edilme durumları. SAÜ Eğitim Fakültesi Dergisi, 14, 59-68.

Lumbantobing, R. (2004). Comparative study on process skills in the elementary science curriculum and textbooks between Indonesia and Japan. Bulletin of the Graduate School of Education, Hiroshima University. Part. II, Arts and Science Education, 53, 31-38.

Marshall, C., & Rossman, G. B. (1999). Designing qualitative research (3rd ed.). London: Sage Publications.

Martin, D. J. (1997). Elementary science methods: A constructivist approach. (Eds: Erin J. O’conner & Timothy Coleman). Delmar Publishers: New York.

Miles, M. B., & Huberman, M. A. (1994). An expanded sourcebook qualitative data analysis. London: Sage.

Ministry of National Education (MoNE). (2005). İlköğretim fen ve teknoloji dersi (4. ve 5. sınıflar) öğretim programı. Talim ve Terbiye Kurulu Başkanlığı, Ankara.

Ministry of National Education, (MoNE). (2006). İlköğretim fen ve teknoloji dersi (6, 7 ve 8. sınıflar) öğretim programı. Talim ve Terbiye Kurulu Başkanlığı, Ankara.

Ministry of National Education (MoNE). (2012). 12 Yıl zorunlu eğitim sorular cevaplar. duyurular2012/12yil_soru_cevaplar.pdf (Retrieved February 15, 2014)

Ministry of National Education (MoNE). (2013). İlköğretim kurumları (İlkokullar ve Ortaokullar) fen bilimleri dersi (3, 4, 5, 6, 7 ve 8. sınıflar) öğretim programı, Talim ve Terbiye Kurulu Başkanlığı, Ankara.

Monhardt L., & Monhardt, R. (2006). Creating a context for the learning of science process skills through picture books.Early Childhood Education Journal, 34(1), 67-71.

Ogan-Bekiroğlu, F. (2007). To what degree do the currently used physics textbooks meet the expectations? Journal of Science Teacher Education, 18, 599-628.

Ongowo, R. O., & Indoshi, F. C. (2013). Science process skills in the Kenya certificate of secondary education biology practical examinations. Creative Education, 4(11), 713-717.

Özgelen, S. (2012). Students’ science process skills within a cognitive domain framework. Eurasia Journal of Mathematics, Science & Technology Education, 8(4), 283-292.

Padilla, M.J. (1990). The science process skills (Research matters-to the science teacher No. 9004). Retrieved from National Association of Research in Science Teaching. 03.06.2015

Rezba, R. J., Sprague, C. R. , McDonnough, J. T. & Matkins, J. J. (2007). Learning and assessing science process skills. Kendall, Hunt Publishing Company: Iova.

Rillero, P. (1998). Process skills and content knowledge. Science activities. Classroom Projects and Curriculum Ideas, 35(3), 3-4.

Saat, R. M. (2004).The acquisition of integrated science process skills in a web‐based learning environment. Research in Science & Technological Education, 22(1), 23-40.

Saban, Y., Aydoğdu, B., & Elmas, R. (2014). 2005 ve 2013 fen Bilgisi öğretim programlarının 4. ve 5. sınıf düzeylerinin bilimsel süreç becerileri açısından karşılaştırılması. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, 32, 62-85.

Scharmann, L. C. (1989). Development of science process skill instruction. Journal of Research in Science Teaching, 26(8), 715-726.

Settlage, J. & Southerland, S. A. (2007). Teaching science to every child: using culture as a starting point. New York: Routledge.

Soyibo, K. (1998). An assessment of Caribbean integrated science textbooks’ practical tasks.

Research in Science & Technological Education, 16(1), 31–41.

Şen, A. Z., & Nakiboğlu, C. (2014). 9. Sınıf kimya, fizik, biyoloji ders kitaplarının bilimsel süreç becerileri açısından karşılaştırılması. Türk Fen Eğitimi Dergisi, 11(4), 63-80.

Tan, M., & Temiz, B. K. (2003). Fen öğretiminde bilimsel süreç becerilerinin yeri ve önemi. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 1(13), 89-101.

Temiz, B. K. (2001). Lise 1.sınıf fizik dersi öğretim programının öğrencilerin bilimsel süreç becerilerini geliştirmeye uygunluğunun incelenmesi. Unpublished master dissertation, Gazi University, Ankara.

Tyson, H. (1997). Overcoming structural barriers to good textbooks. Paper presented at the meeting of the National Education Goals Panel, retrieved June 4, 2015 from

Yıldırım, A., & Şimşek, H. (2006). Sosyal bilimlerde nitel araştırma yöntemleri (6. Baskı). Ankara: Seçkin Kitabevi.

Yıldız Feyzioğlu, E., & Tatar, N. (2012). Fen ve teknoloji ders kitaplarındaki etkinliklerin bilimsel süreç becerilerine ve yapısal özelliklerine göre incelenmesi. Eğitim ve Bilim, 37(164), 108-125.

Yılmaz Senem, B. (2013). Content analysis of 9th grade physics curriculum, textbook, lessons with respect to science process skills. Unpublished doctoral dissertation, The Middle East Technical University, Ankara.

Zeitler, W. R. (1981). The influence of the type of practice in acquiring process skills. Journal of Research in Science Teaching, 18(3), 189–197.

View Abstract References Full text PDF

Predicting Turkish Preservice Elementary Teachers’ Orientations to Teaching Science with Epistemological Beliefs, Learning Conceptions, and Learning Approaches in Science

Elif Adibelli Şahin, Hasan Deniz & Mustafa Sami Topçu

pp. 515-534  |   DOI: 10.12973/ijese.2016.333a
Published Online: April 18, 2016
Article Views: 968  |  Article Download: 699


The present study investigated to what extent Turkish preservice elementary teachers’ orientations to teaching science could be explained by their epistemological beliefs, conceptions of learning, and approaches to learning science. The sample included 157 Turkish preservice elementary teachers. The four instruments used in the study were School Physics Teachers’ Conceptions of Teaching (Gao & Watkins, 2002), the Epistemic Belief Inventory (Schraw, Bendixen, & Dunkle, 2002), and the Conceptions of Learning Science and the Approaches to Learning Science questionnaires (Lee, Johanson, & Tsai, 2008). Step-wise multiple regression analyses indicated that the teacher-centered/moulding orientation to teaching science was mostly predicted by unfruitful learning approaches, naïve epistemological beliefs, and traditional learning conceptions in science. On the other hand, the student-centered/cultivating orientation to teaching science was mostly explained by constructivist learning conceptions in science. These findings suggest that epistemological beliefs, learning approaches, and learning conceptions are important factors in the genesis of conceptions of teaching science. 

Keywords: epistemological beliefs, elementary preservice teachers, teaching conceptions, learning conceptions, learning approaches


Al-Amoush, S., Usak, M., Erdogan, M., Markic, S., & Eilks, I. (2013). Pre-service and in-service teachers’ beliefs about teaching and learning chemistry in Turkey. European Journal of Teacher Education, 36(4), 464-479.

Antoniadou, P. & Skoumios, G. M. (2013). Primary teachers’ conceptions about science teaching and learning. The International Journal of Science in Society, 4, 69-82.

Argyris, C., Putnam, R., & McLain Smith, D. (1985). Action science. San Francisco: Jossey-Bass.

Argyris, C. & Schon, D. (1978). Organisational learning: A theory-of-action perspective. Reading, Massachusetts: Addison-Wesley.

Aypay, A. (2010). Teacher education student’s epistemological beliefs and their conceptions about teaching and learning. Procedia-Social and Behavioral Sciences, 2(2), 2599-2604.

Aypay, A. (2011). The adaptation of the teaching-learning conceptions questionnaire and its relationships with epistemological beliefs. Educational Sciences: Theory and Practice, 11(1), 21-29.

Bahcivan, E. (2014). Examining relationships among Turkish preservice science teachers’ conceptions of teaching and learning, scientific epistemological beliefs and science teaching efficacy beliefs. Journal of Baltic Science Education, 13(6), 870-882.

Bath, D. M. & Smith, C. D. (2009). The relationship between epistemological beliefs and the propensity for lifelong learning. Studies in Continuing Education, 31(2), 173-189.

Boulton-Lewis, G. M., Smith, D. J. H., McCrindle, A. R., Burnett, P. C., & Campbell, K. J. (2001). Secondary teachers’ conceptions of teaching and learning. Learning and Instruction, 11(1), 35-51.

Calkins, S., Johnson, N., & Light, G. (2012). Changing conceptions of teaching in medical faculty. Medical Teacher, 34(11), 902-906.

Cam, A., Topcu, M. S., Sulun, Y., Guven, G., & Arabacioglu, S. (2012). Translation and validation of the Epistemic Belief Inventory with Turkish pre-service teachers. Educational Research and Evaluation, 18(5), 441-458.

Chan, K. W. (2004). Preservice teachers’ epistemological beliefs and conceptions about teaching and learning: Cultural implications for research in teacher education. Australian Journal of Teacher Education, 29(1), 1-13.

Chan, K.W. & Elliott, R.G. (2004). Relational analysis of personal epistemology and conceptions about teaching and learning. Teaching and Teacher Education, 20, 817-831.

Chen, J., Brown, G. T. L., Hattie, J. A. C., & Millward, P. (2012). Teachers’ conceptions of excellent teaching and its relationships to self-reported teaching practices. Teaching and Teacher Education, 28(7), 936-947.

Cheng, M. M., Chan, K. W., Tang, S. Y., & Cheng, A. Y. (2009). Pre-service teacher education students’ epistemological beliefs and their conceptions of teaching. Teaching and Teacher Education, 25(2), 319-327.

Entwistle, N., McCune, V., & Hounsell, J. (2002). Approaches to studying and perceptions of university teaching-learning environments: Concepts, measures and preliminary findings (Occasional Report1). Retrieved from Enhancing Teaching and Learning Environments in Undergraduate Courses Project website:

Entwistle, N. & Tait, H. (1990). Approaches to learning, evaluations of teaching, and preferences for contrasting academic environments. Higher Education, 19(2), 169-194.

Fox, D. (1983). Personal theories of teaching. Studies in Higher Education, 8(2),151-163.

Friedrichsen, P., van Driel, J. H., & Abell, S. K. (2011). Taking a closer look at science teaching orientations. Science Education, 95(2), 358-376.

Gao, L. & Watkins, D. A. (2002). Conceptions of teaching held by school science teachers in P.R. China: Identification and cross-cultural comparisons. International Journal of Science Education, 24(1), 61-79.

Green, S. B. (1991). How many subjects does it take to do a regression analysis. Multivariate Behavioral Research, 26(3), 499-510.

Hermans, R., Tondeur, J., van Braak, J., & Valcke, M. (2008). The impact of primary school teachers’ educational beliefs on the classroom use of computers. Computers & Education, 51(4), 1499-1509.

Hewson, P. W. & Hewson, M. G. (1987). Science teachers’ conceptions of teaching: Implications for teacher education. International Journal of Science Education, 9(4), 425-440.

Hewson, P. W., Kerby, H.W., & Cook, P. A. (1995). Determining the conceptions of teaching science held by experienced high school science teachers. Journal of Research in Science Teaching, 32(5), 503-520.

Huibregtse, I, Korthagen, F., & Wubbels, T. (1994). Physics teachers’ conceptions of learning, teaching and professional development. International Journal of Science Education, 16(5), 539-561.

Jones, A. (2009). Generic attributes as espoused theory: The importance of context. Higher Education, 58(2), 175-191.

Kember, D. (1997). A reconceptualisation of the research into university academics’ conceptions of teaching. Learning and Instruction, 7(3), 255-275.

Kember, D., Biggs, J., & Leung, D. Y. P. (2004). Examining the multidimensionality of approaches to learning through the development of a revised version of the Learning Process Questionnaire. British Journal of Educational Psychology, 74, 261-280.

Kember, D. & Gow, L. (1994). Orientations to teaching and their effect on the quality of student learning. The Journal of Higher Education, 65(1), 58-74.

Kind, V. (2016). Preservice science teachers’ science teaching orientations and beliefs about science. Science Education, 100(1), 122-152.

Kiroglu, K. (2008). Yeni ilköğretim programları (1-5. Sınıflar) [New elementary curricula (1st-5th grades) (2nd. ed.). Ankara: Pegem A.

Koballa, T. R., Glynn, S. M., Upson, L., & Coleman, D. C. (2005). Conceptions of teaching science held by novice teachers in an alternative certification program. Journal of Science Teacher Education, 16(4), 287-308.

Koballa Jr, T., Graber, W., Coleman, D. C., & Kemp, A. C. (2000). Prospective gymnasium teachers’ conceptions of chemistry learning and teaching. International Journal of Science Education, 22(2), 209-224.

Lee, M.-H., Johanson, R. E., & Tsai, C. C. (2008). Exploring Taiwanese high school students’ conceptions of and approaches to learning science through a structural equation modeling analysis. Science Education, 92(2), 191-220.

Li, N., Leung, D. Y., & Kember, D. (2001). Medium of instruction in Hong Kong universities: The mis-match between espoused theory and theory in use. Higher Education Policy, 14(4), 293-312.

Lingbiao, G. & Watkins, D. (2001). Identifying and assessing the conceptions of teaching of secondary school physics teachers in China. British Journal of Educational Psychology, 71, 443-469.

López‐Íñiguez, G. & Pozo, J. I. (2014). The influence of teachers’ conceptions on their students’ learning: Children’s understanding of sheet music. British Journal of Educational Psychology, 84(2), 311-328.

Lotter, C., Harwood, W. S.,& Bonner, J. J. (2007). The influence of core teaching conceptions on teachers’ use of inquiry teaching practices. Journal of Research in Science Teaching, 44(9), 1318-1347.

Magnusson, S., Krajcik, J., Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 95-132). Dordrecht, The Netherlands: Kluwer.

Otting, H., Zwaal, W., Tempelaar, D., & Gijselaers, W. (2010). The structural relationship between students’ epistemological beliefs and conceptions of teaching and learning. Studies in Higher Education, 35(7), 741-760.

Prawat, R. S. (1992). Teachers’ beliefs about teaching and learning: A constructivist perspective. American Journal of Education, 100(3), 354-395.

Prosser, M., Trigwell, K., & Taylor, P. (1994). A phenomenographic study of academics’ conceptions of science learning and teaching. Learning and Instruction, 4, 217-231.

Richardson, J. T. (2005). Students’ perceptions of academic quality and approaches to studying in distance education. British Educational Research Journal, 31(1), 7-27.

Sahin, S. & Yilmaz, H. (2011). A confirmatory factor analysis of the teaching and learning conceptions questionnaire (TLCQ). Journal of Instructional Psychology, 38(3), 194-200.

Samuelowicz, K. & Bain, J. D. (1992). Conceptions of teaching held by academic teachers. Higher Education, 24, 93-111.

Schommer, M. (1990). The effects of beliefs about the nature of knowledge on comprehension. Journal of Educational Psychology, 82, 498-504.

Schraw, G., Bendixen, L. D., & Dunkle, M. E. (2002). Development and validation of the Epistemic Belief Inventory (EBI). In B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 261-275). Mahwah, NJ: Erlbaum.

Stofflett, R. T. & Stoddart, T. (1994). The ability to understand and use conceptual change pedagogy as a function of prior content learning experience. Journal of Research in Science Teaching, 31(1), 31-51.

Tabachnick, B. G., & Fidell, L. S. (2001). Using Multivariate Statistics. U.S.A: Pearson.

Taylor, D. L. & Booth, S. (2015). Secondary physical science teachers’ conceptions of science teaching in a context of change. International Journal of Science Education, (ahead-of-print), 1-22.

Tikva, J. B. (2010). Socratic teaching is not teaching, but direct transmission is: Notes from 13 to 15-year olds’ conceptions of teaching. Teaching and Teacher Education, 26(3), 656-664.

Topcu, M. S. (2011). Turkish elementary student teachers’ epistemological beliefs and moral reasoning. European Journal of Teacher Education, 34(1), 99-125.

Tsai, C.-C. (2002). Nested epistemologies: Science teachers’ beliefs of teaching, learning and science. International Journal of Science Education, 24(8), 771-783.

Tsai, C.-C. (2004). Conceptions of learning science among high school students in Taiwan: A phenomenographic analysis. International Journal of Science Education, 26, 1733-1750.

van Beek, J. A., de Jong, F. P. C. M., Wubbels, T., & Minnaert, A. E. M. G. (2014). Measuring teacher regulating activities concerning student learning in secondary education classrooms: Reliability and validity of student perceptions. Studies in Educational Evaluation, 43, 206-213.

Yilmaz‐Tuzun, O. & Topcu, M. S. (2008). Relationships among preservice science teachers’ epistemological beliefs, epistemological world views, and self‐efficacy beliefs. International Journal of Science Education, 30(1), 65-85.

View Abstract References Full text PDF